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ABSTRACT

In practical communication environments, it is frequently
observed that the underlying noise pdf is not the Gaussian
and may vary in a wide range from short-tailed to heavy-
tailed forms. To provide stable and high quality of detec-
tion of a known signal, we design the asymptotically mini-
max (in the Huber sense) minimum distance detection rule
under rather general conditions of regularity imposed upon
noise pdfs and derive the closed expression for its probabil-
ity of detection error. In several pdf classes, the least fa-
vorable pdfs and corresponding minimax detectors are writ-
ten down. The minimax robust detectors exhibit robustness
of detection in heavy-tailed noises and efficiency in short-
tailed ones both in asymptotics and on finite samples.

1. INTRODUCTION

Consider the problem of detection of a known signal {θi}N
1

in the additive i.i.d. noise {ni}N
1 with pdf f from a class F .

Given {xi}N
1 , it is necessary to decide whether the signal

{θi}N
1 is observed. The problem of detection is set up as

the problem of hypotheses testing:

H0 : xi = ni versus H1 : xi = θi +ni, i = 1, . . . , N. (1)

Given a pdf f , the classical theory of hypotheses testing
yields various optimal (in the Bayesian, minimax, Neyman-
Pearson senses) algorithms for the solution of this problem:
all the optimal algorithms are based on the value of the like-
lihood ratio (LR) statistic TN (x) =

∏N
i f(xi − θi)/f(xi)

that must be compared with a certain threshold. The differ-
ences between the aforementioned approaches result only in
the values of a threshold.

In many practical problems of radio-location, acoustics,
and communications, noise distributions are only partially
known. For instance, it may be known that either the under-
lying pdf is approximately Gaussian, or there is some infor-
mation on its behavior in the central zone and on the tails, or
an impulsive noise may distort the observed signal, etc. For
these detection problems, the well-known Huber minimax

This work is supported by IT-Professorship program by IITA in part.

approach can be used when the LR statistic is constructed
for the least favorable density f∗ in a class F , and some
robust alternatives to the classical methods have been pro-
posed [3, 5]. Recently, some of these approaches have been
extended to more complicated static models of signals under
the assumptions of the approximately Gaussian character of
noise distributions [10]. Heavy-tailed non-Gaussian noise
models with finite and infinite variances both for static and
dynamic systems are considered in many works, for exam-
ple, in [8].

In this paper, we generalize our recent result [6] on min-
imax detection of a constant signal on the case of minimax
detection of a known signal of arbitrary shape. Also, we
have interest in the models containing heavy-tailed noise
pdfs with large or even with infinite variances as well as
short-tailed ones with small variances.

This paper is organized as follows. In Section 2, we give
the probability of detection error for the proposed minimum
distance detection rule and show that this rule is asymptot-
ically minimax robust in the Huber sense. In Section 3, the
particular cases of the minimax detector are considered. In
Section 4, concluding remarks are made.

2. MAIN RESULT: THE MINIMAX DETECTOR

In this paper, we deal with the minimum distance detection
rule

N∑
i=1

ρ(xi) ≶
N∑

i=1

ρ(xi − θi), (2)

where ρ(z) is a loss function characterizing the assumed
form of a distance. This choice of such a simple detection
rule is mainly determined by the fact that it allows of the di-
rect use of Huber’s minimax theory on M -estimators of lo-
cation [3]. It can be seen that the choice ρ(z) = − log f(z)
yields the optimal LR test statistic minimizing the Bayesian
risk with equal costs and prior probabilities of hypotheses.
In this case, it is necessary to know exactly the shape of
pdf f to figure out the loss function, and the LR-statistics
usually behave poorly under the departures from the as-
sumed pdf model.
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To formulate the result, we need the derivative of a loss
function ψ = ρ′ called a score function, belonging to a
class Ψ.

Assume the following sufficient conditions of regularity
imposed upon pdfs f and score functions ψ (they provide
consistency and asymptotical normality of M -estimators of
location; for details, see [2], pp. 125-127):

(F1) f is symmetric and unimodal.

(F2) f is twice continuously differentiable on (0,∞).

(F3) Fisher information for location

I(f) =
∫ ∞

−∞
[f ′(x)/f(x)]2f(x) dx

satisfies 0 < I(f) < ∞.

(Ψ1) ψ is well-defined and continuous on (0,∞).

(Ψ2)
∫ ∞
−∞ ψ(x)f(x) dx = 0.

(Ψ3)
∫ ∞
−∞ ψ2(x)f(x) dx < ∞.

(Ψ4) 0 <
∫ ∞
−∞ ψ′(x)f(x) dx < ∞.

Then, under conditions (F1)–(Ψ4), the probability of
detection error for the minimum distance detection rule (2)
takes the following form as N → ∞:

PE = Q
(

1
2

√
E

V (ψ, f)

)
, (3)

where Q(z) is the complementary error function;
E = limN→∞

∑N
1 θ2

i is the signal energy;

V (ψ, f) =
∫ ∞

−∞
ψ2(x)f(x) dx

[∫ ∞

−∞
ψ′(x)f(x) dx

]−2

is the asymptotic variance of the M -estimators of a location
parameter [3];
the signal {θi}N

1 is assumed weak in the sense that its am-
plitudes form the decreasing with N sequences:

θi = θiN = Ai/
√

N, i = 1, . . . , N.

From Eq. (3) it directly follows that the minimax prob-
lem with respect to the probability of detection error

min
ψ∈Ψ

max
f∈F

PE(ψ, f)

is equivalent to Huber’s problem min
ψ∈Ψ

max
f∈F

V (ψ, f).

Thus, all the results on the minimax estimation of loca-
tion are also applicable in this case: the optimal loss func-
tion ρ∗ in the minimum distance detector is defined by the

maximum likelihood choice for the least favorable pdf f∗

minimizing Fisher information for location I(f) over the
given class F [3]

ρ∗(x) = − log f∗(x), ψ∗(x) = −f∗′(x)/f∗(x),

f∗ = arg min
f∈F

∫ ∞

−∞
[f ′(x)/f(x)]2 f(x) dx. (4)

Further, the saddle-point pair (ψ∗, f∗) provides the guaran-
teed upper bound upon the probability of detection error PE

PE(ψ∗, f) ≤ PE(ψ∗, f∗) for all f ∈ F .

3. THE PARTICULAR CASES OF THE MINIMAX
DETECTOR

Within the minimax approach, the choice of a pdf class F
fully determines all the subsequent stages and qualitative
character of the corresponding minimax procedure. Below
we enlist the qualitatively different examples of pdf classes
with the corresponding least favorable pdfs and minimax
detectors.

3.1. Example 1: ε-contaminated Gaussian pdfs

Historically the first class of ε-contaminated standard Gaus-
sian distribution was proposed by Huber [3]

FH = {f : f(x) = (1 − ε)N(x; 0, 1) + εh(x), } (5)

where N(x; 0, 1) = (2π)−1/2 exp(−x2/2), h(x) is an arbi-
trary pdf, and ε (0 ≤ ε < 1) is a contamination parameter
characterizing the fraction of contamination and the level
of the uncertainty of information about the shape of an un-
derlying noise pdf. In this case, the least favorable density
consists of two parts: the Gaussian in the center and the
exponential tails given by

f∗
H(x) =

⎧⎨
⎩

(1 − ε)N(x; 0, 1), for |x| ≤ k,
1 − ε√

2 π
exp

(
−k |x| + k2

2

)
, for |x| > k,

where the dependence k = k(ε) is tabulated see [3], p. 87).
The optimal score function has the following limited

linear form ψ∗
H(z) = max [−k,min (z, k)]. The corre-

sponding minimax robust detector is given by Eq. (2) with
ρ(z) = − log f∗

H(z).

3.2. Example 2: nondegenerate pdfs

In the class F1 of nondegenerate pdfs (with a bounded den-
sity value at the center of symmetry), the least favorable
density is known to be the Laplace [9]

F1 = {f : f(0) ≥ 1/(2a) > 0} ,
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f∗
1 (x) = L(x; 0, a) = (2a)−1 exp(−|x|/a),

here the scale parameter a characterizes the pdf dispersion
about the center of symmetry. In this case, we have the
sign score function ψ∗

1(z) = sgn(x)/a and the L1-norm
minimax robust detector given by Eq. (2) with ρ(z) = |z|.

3.3. Example 3: pdfs with a bounded variance

In the class F2 of pdfs with an upper-bounded variance, the
least favorable density is the Gaussian [4]

F2 =
{

f : σ2(f) =
∫ ∞

−∞
x2f(x) dx ≤ σ2

}
,

f∗
2 (x) = N(x; 0, σ)

with the corresponding linear score function ψ∗
2(z) = z/σ2

and the L2-norm minimax detector given by Eq. (2) with
ρ(z) = z2.

3.4. Example 4: pdfs with a bounded variance and pdf
value at the center of symmetry

In the classF12 comprising the restrictions of the two classes
F1 and F2

F12 =
{

f : f(0) ≥ 1
2a

> 0, σ2(f) =
∫

x2f(x)dx ≤ σ2

}
,

the least favorable pdf is of the form [7]:

f∗
12(x) =

⎧⎨
⎩

N(x; 0, σ), for σ2/a2 < 2/π,
WH(x; 0, ν, σ), for 2/π ≤ σ2/a2 ≤ 2,
L(x; 0, a), for σ2/a2 > 2.

Here N(x; 0, σ) and L(x; 0, a) are the Gaussian and Laplace
pdfs, respectively;
WH(x; 0, ν, σ) is called the Weber-Hermite pdf given by

WH(x; 0, ν, σ) =
Γ(−ν)

√
2ν + 1 + 1/S(ν)√
2π σ S(ν)

×D2
ν

( |x|
σ

√
2ν + 1 + 1/S(ν)

)
. (6)

The shape parameter ν takes its values in (−∞, 0] and de-
pends on the ratio of parameters σ and a as follows

σ

a
=

√
2ν + 1 + 1/S(ν)Γ2(−ν/2)√

2π 2ν+1 S(ν) Γ(−ν)
.

Further, Dν(·) are the Weber-Hermite functions or the func-
tions of the parabolic cylinder [1];
S(ν) = [ψ(1/2 − ν/2) − ψ(−ν/2)]/2, and in this context,
ψ(x) = d ln Γ(x)/dx is the digamma function.

The Weber-Hermite pdfs (6) arise as the solution to the
Euler-Lagrange equation for the variational problem (4). The
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Fig. 1. Gaussian noise: A =
√

SNR.

Gaussian and Laplace pdfs are the particular cases of Eq. (6)
when ν = 0 and ν → −∞, respectively.

In this case, the minimax detector is of the form:
• with σ2(f) ≤ 2a2/π or with relatively small variances, it
is the minimum L2-norm distance detector;
• with σ2 > 2a2 or with relatively large variances, it is the
minimum L1-norm distance detector;
• with relatively moderate variances, it is given by Eq. (2)
with ρ(z) = − log f∗

12(z) but it can be rather effectively
approximated by the low-complexity minimum Lp∗-norm
distance detector with the power p∗ ∈ (1, 2) given by

p∗ =
{

5.33 − 7.61x + 3.73x2, 2/π < x ≤ 1.35,
2.66 − 1.65x + 0.41x2, 1.35 < x < 2,

where x = σ2/a2.

3.5. Some numerical results on detector performance

The probability of detection error PE given by Eq. (3) was
computed for the standard Gaussian noise, the Cauchy noise
with the pdf f(x) = 1/[π(1+x2)], and for the exponential-
power noise with the pdf f(x) ∝ exp(−|x|q).

The performance of the L1-, L2-, Lp∗-norm, and Hu-
ber’s detectors was studied. In the latter case, the minimum
distance detection rule (2) was examined for Huber’s opti-
mal loss function ρ(z) = − log f∗

H(z) with ε = 0.1. The
results of computing are exhibited in Fig. 1 – Fig. 3.

On finite samples with N = 20 and N = 100, the per-
formance of the minimax detectors was studied by Monte
Carlo technique, and the obtained results proved to be close
to the asymptotic results obtained from Eq. (3).
Gaussian noise. The Lp∗-norm detector coincides with the
optimal L2-norm detector both being better than Huber’s.
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Fig. 2. Cauchy noise: A =
√

E.
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Fig. 3. Exponential-power noise: q = 100, A =
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SNR.

Cauchy noise. The L2-norm detector naturally has the ex-
tremely poor performance. The Lp∗-, L1-norm and Huber’s
detectors exhibit their good robust properties.
”Short”-tailed noise (the exponential-power with q = 100
close to the uniform). The L2-norm and Lp∗ detectors prove
their superiority over Huber’s and the L1-norm detectors.

4. CONCLUDING REMARKS

Our main aim is to expose some new results on the applica-
tion of Huber’s minimax approach to robust detection:
• First, it is Eq. (3) that yields the asymptotic probability
of detection error for the minimum distance detection rule
and allows of the direct use of Huber’s results on robust
estimation of a location parameter in detection problems.
• Second, in short-tailed pdf models it is the significantly

better performance of the minimax detector designed for
the distribution class with a bounded variance and density
value at the center of symmetry as compared to the perfor-
mance of conventional Huber’s soft limited detection rule
optimal on the class of ε-contaminated Gaussian distribu-
tions. Thus, if the noise variance is actually small enough
(as in short-tailed pdf models) then it is quite reasonable to
use the L2-norm detector to enhance the power of detection.
• Moreover, the Gaussian pdf is widely used in applications
not because of the CLT arguments which guarantee only the
approximate Gaussianity (the main lesson of robust statis-
tics is just that small departures from Gaussianity may cause
great consequences [2, 3]) but mainly by the reason that it
is the least favorable distribution in models with a bounded
variance.
• Finally, within minimax approach it is no need in the de-
tailed specifying of a pdf shape that usually is unrealistic in
changing noise environments.
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