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ABSTRACT

In this paper, we examine the problem of fitting a circle to a set of
noisy measurements of points from the circle’s circumference, as-
suming independent, identically distributed GAUSSIAN measure-
ment errors. We propose an algorithm based on Branch and Bound
to obtain the Maximum Likelihood Estimate and show that this al-
gorithm obtains the optimal estimate. We examine the rate of con-
vergence and determine the computational complexity of the pro-
posed algorithm. We also provide timings and compare to existing
techniques for circle fitting proposed in the literature. Finally, we
demonstrate that our algorithm is statistically efficient by compar-
ing our results to the CRAMÉR-RAO lower bound.

1. INTRODUCTION

The accurate fitting of a circle to noisy measurements of points on
its circumference is a much-studied problem in the scientific liter-
ature. In his paper, CHAN [1] proposes a ‘circular functional rela-
tionship’ which assumes that the measurement errors are instances
of independent and identically distributed (i.i.d.) random variables
and that the points lie at fixed but unknown angles around the cir-
cumference. This model requires the estimation of the unknown
angles of each circumferential point, in addition to the center and
radius of the circle. CHAN proposes an approximate method to
find the MLE when the errors have a GAUSSIAN distribution. This
method is identical to the least-squares method of [2]. He also
examines the consistency of the estimator.

A disadvantage of the MLE for circles is that it can be dif-
ficult to obtain numerically. As a result, existing algorithms for
computing the MLE only produce locally optimal estimates. It is
well known that for high noise there are often several local min-
ima [3–6]. BERMAN & CULPIN [3] have carried out a detailed
statistical analysis of both the MLE and the DELOGNE-KÅSA es-
timator (DKE) which uses a least-squares approach. Specifically,
they investigated the asymptotic consistency and variance of the
estimates.

Due to the numerical difficulties of the MLE, there are several
techniques for fitting which are widely used by practitioners. The
NEWTON-RAPHSON method can often fail in the case of fitting
circles [3,4], diverging to infinity or entering a limit cycle depend-
ing on the arrangement of the points and the initialisation. When it
converges there is no guarantee that the local optimum which has
been found is the global optimum. There are other iterative esti-
mators which guarantee a reduction in the objective function with
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each iteration [4–6]. This is an improvement on the NEWTON-
RAPHSON method, however, this does not guarantee convergence
in the estimates.

The principle of Branch and Bound was first proposed in a dis-
crete setting by LAND & DOIG in [7] and the Branch and Bound
search method is described in a discrete setting by WINSTON [8].
Branch and Bound has previously been proposed for locating ap-
proximately circular contours [9] and more general contours in im-
ages [10]. In [11], ZHANG & KORF present an analysis of the av-
erage computational complexity of Branch and Bound in a typical
search application.

In this paper, we propose a new algorithm which uses the prin-
ciple of Branch and Bound to estimate circle parameters from a
set of noisy measurements of points on a circle’s circumference.
This algorithm repeatedly partitions a circle parameter space into
subspaces. After each such refinement of the partitioning, lower
and upper bounds on the objective function of the MLE are com-
puted for each subspace. Many subspaces may then be discarded
from consideration, leading to an efficient search algorithm which
bounds the MLE within an arbitrarily small region in the circle
parameter space. We show theoretically and empirically that this
algorithm obtains the estimate of globally maximum likelihood.

2. THEORY

2.1. CHAN’s Circular Functional Model

CHAN’s circular functional model [1] for Cartesian coordinates pi,
i = 1, . . . , N can be expressed as pi = c + ru(θi) + ξi, where
c = (c1, c2)

T is the center of the circle, r is its radius, the u(θi) =
(cos θi, sin θi)

T are unit vectors and the ξi are instances of random
vectors representing the measurement error. They are assumed to
be zero-mean and i.i.d. In addition, we will specify that they are
GAUSSIAN with covariance σ2I.

2.2. Maximum-Likelihood Estimation

If we let Ω = (c, r, {θi})
T , the conditional likelihood for Ω is

L(Ω | pi) =
1

(2πσ2)N

N∏
i=1

exp

(
−
‖pi − (c + ru(θi))‖

2

2σ2

)
.

(1)
By taking the logarithm of (1) and ignoring the constant offset and
scaling, both of which depend on N and σ only, it is possible to
simplify the objective function so that

FML(c) =

N∑
i=1

‖pi − c‖2 −
1

N

{
N∑

i=1

‖pi − c‖

}2

(2)

= N VAR[‖pi − c‖],
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where VAR[‖pi−c‖] is the empirical variance of ‖pi−c‖. Thus,
if we define di(x) = ‖pi − x‖ where x ∈ R

2 is the set of candi-
date circle centres, then the MLE of the circle parameters is

(ĉML, r̂ML) = arg min
(x,ρ)

N∑
i=1

[di(x) − ρ]2, (3)

ĉML = N arg min
x

VAR[di(x)], (4)

where ρ ∈ R
+ is a candidate circle radius.

2.3. Sets and Partitions

In this paper we consider functions applied to points, sets, and
set partitions. It is assumed that we are searching a finite-volume
subset Γ of a real space R

N of finite dimension. We consider only
compact sets, which are closed and bounded in the spaces that we
consider.

Definition 1. A set partition P of a compact set Γ is a finite collec-
tion of compact subsets P = {γi} with union Γ and pairwise in-
tersection of LEBESGUE measure zero, i.e. ∀i �= j, L(γi ∩ γj) =
0, and

⋃
P = Γ.

For clarity, functions whose argument is a single point will
be denoted f(·), functions whose input is a set will be denoted
f [·], and functions whose input is a set partition will be denoted
f 〈·〉. For example, the function min[·] maps a set to its minimal
element. Set functions f [·] may be applied to set partitions (which
are simply sets of sets) to give set-valued output. When round
brackets are used with set argument, we interpret the result as set-
valued, i.e., f(S) = {f(x) | x ∈ S}.

Definition 2. The diameter D[·] of a compact set γ is the low-
est upper bound on the distance between two elements of γ, i.e.
D[γ] = sup

p1,p2∈γ ‖p1 − p2‖.

The diameter D[γ] is finite for a compact set γ ⊆ R
M . Ob-

serve that if γ1 ⊆ γ2, D[γ1] ≤ D[γ2].
The diameter D 〈·〉 of a set partition P is defined as the maxi-

mum diameter over all subsets γ ∈ P , i.e., D 〈P 〉 = maxγ∈P D[γ].

Definition 3. Given two set partitions P1 and P2 of the set Γ,
we define a partial ordering P1 ≤ P2 ⇐⇒ ∀γ ∈ P2, ∃γ′ ∈
P1 s.t. γ ⊆ γ′.

This means that P2 more finely partitions Γ than P1. Observe
that, for two partitions P2 ≥ P1 of Γ, D 〈P2〉 ≤ D 〈P1〉.

For the remainder of this paper, we only provide lemma and
theorem statements. All proofs may be found in [12].

2.4. Branch and Bound

Consider a scalar function F : Γ → R over the domain Γ whose
globally extremal point(s) we wish to locate. In this section we as-
sume that the point of minimal value is desired, with the generali-
sation to finding maximal points implicit throughout. It is assumed
that F is a continuous function and that Γ is a compact set.

In maximum-likelihood estimation, Γ corresponds to the pa-
rameter space of a model while F computes the negative log-
likelihood of a given parameter vector. The search method known
as Branch and Bound may be applied to search for a minimum of
the function F in the parameter space Γ by repeatedly partitioning

Γ into compact subsets and bounding the range of values within
each set. Sets which may contain the minimum are then considered
in greater detail by partitioning into smaller subsets, while sets
which cannot contain the minimum may be discarded from con-
sideration. In this paper we apply Branch and Bound to solve con-
tinuous problems which are of the form ĉ = arg minx∈Γ F (x).

2.4.1. Bounding a function over a region

Consider a region in the parameter space γ ⊆ Γ. Then a pair of set
functions Fmin[γ], Fmax[γ] bound F over the region γ if and only
if Fmin[γ] ≤ min[F (γ)] and max[F (γ)] ≤ Fmax[γ]. Such bounds
need not be tight. Indeed the bounding functions Fmin[γ], Fmax[γ]
may be chosen for simple computation so as to avoid evaluating F
at all points in γ.

Lemma 1. Given two compact sets γ1 ⊆ γ2 ⊆ Γ we have that
min[F (γ1)] ≥ min[F (γ2)] and max[F (γ1)] ≤ max[F (γ2)].

So, as we remove points from a set γ2 to produce the subset γ1,
the lower bound is monotonically non-decreasing while the upper
bound is monotonically non-increasing.

The analogous property for bounding functions now follows.

Definition 4. Fmin, Fmax are monotonic if and only if, for compact
sets γ1 ⊆ γ2 ⊆ Γ, Fmin[γ1] ≥ Fmin[γ2] and Fmax[γ1] ≤ Fmax[γ2].

Lemma 2. Consider a sequence of non-empty compact sets γ1 ⊃
γ2 ⊃ . . . ⊃ γ∞ with monotonically decreasing diameter δi =
D[γi] converging to 0. Then define γ∞ is a set of zero radius, i.e. a
point. Then, for a continuous function F , limi→∞ min[F (γi)] =
F (γ∞) = limi→∞ max[F (γi)].

Definition 5. The bounding functions Fmin, Fmax are convergent if
and only if limi→∞ Fmin[γi] = limi→∞ Fmax[γi] = F (γ∞).

2.4.2. Bounding a set partition

We may obtain bounds for the global minimum of F on Γ from
the bounding functions Fmin, Fmax applied to a set partition P of Γ

min[Fmin[P ]] ≤ min[F (Γ)] ≤ min[Fmax[P ]]. (5)

Consider a sequence of increasingly fine partitions P1 ≤ P2 ≤
. . . of Γ with diameter converging to zero. Then for convergent
bounding functions Fmin and Fmax, the bounds on the global min-
imum computed from (5) converge to the global minimum, i.e.
limi→∞ min[Fmin[Pi]] = min[F (Γ)] = limi→∞ min[Fmax[Pi]].

Lemma 3. Sets γ′ ∈ P with lower bound Fmin[γ
′] greater than

the minimal upper bound min[Fmax[P ]] cannot contain a global
minimum, i.e., Fmin[γ

′] > min[Fmax[P ]] → ĉ /∈ γ′. In the
search for global minima such sets may be discarded.

2.4.3. Branch and Bound Algorithm

Here we describe an application of the Branch and Bound princi-
ple to locate the global minimum of a function F . Figure 1 depicts
a Branch and Bound search tree alongside the corresponding parti-
tioning of the search space Γ. We begin by considering a set in the
parameter space Γ which contains the global minimum. This set is
recursively partitioned into smaller subsets of equal size. We may
then evaluate the bounds Fmin and Fmax on the minimum value
of F within each set. The bounds on the minimum value of F
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Fig. 1. Branch and bound applied to function optimisation.

guide the branching process, restricting the regions of Γ which
need to be considered in more detail. In particular, the application
of Lemma 3 allows us to remove from consideration a number
of sets which cannot contain the global minimum. This process
prunes the search tree, reducing the number of regions which must
be searched. Finally, the algorithm halts when the position of the
global minimum is known within a prescribed distance δ.

Algorithm 1: (Branch & Bound)
Locate the position of the minimum ĉ = arg minx∈Γ F (x) within
a distance δ:

• Set P = {Γ}

• Until all sets γ ∈ P may be contained within a diameter
D[

⋃
P ] < δ

Branch: Refine P by partitioning each set in P

Bound: For all γ ∈ P , compute bounds Fmin[γ] and Fmax[γ]

Prune: Discard all sets γ ∈ P with Fmin[γ] > min[Fmax[P ]]

Theorem 1. For a uniformly continuous function F with a sin-
gle point ĉ of globally minimal value and for convergent bounding
functions Fmin and Fmax, Algorithm 1 terminates after a finite num-
ber of operations.

Theorem 2. For a function F with a single point ĉ of globally
minimal value, at termination Algorithm 1 locates this point within
a distance δ.

The rate of convergence of the algorithm depends upon the re-
finement scheme for the set partition P as well as the properties
of the bounding functions Fmin and Fmax. Note that the algorithm
described in this paper will not terminate when, due to a patho-
logical configuration of the noisy circle points, there are multiple
global minima of exactly equal value. As the set of such point
configurations has measure zero it is not considered in this paper.

3. ALGORITHM

3.1. Log-Likelihood Bounds

In this section we consider the objective function in (2) This func-
tion is defined over the parameter space of possible circle centers,
Γ = R

2. In this section we consider set partitionings of Γ into
rectangles γ with extent [c1

min, c1
max] × [c2

min, c2
max].

Given a rectangle γ ⊆ Γ we wish to define bounding functions
Fmin and Fmax which are monotonic, convergent and efficiently
computable. We do so by bounding each term of the summations
in (2), which in turn requires bounding the distances di(x).

3.1.1. Bounding di

The likelihood function in (2) depends on di(x), which are uni-
formly continuous convex functions. We treat di(x) as a scalar
field and bound it by 1st order polynomials, i.e., we may define
tight bounds on di(x) over the rectangle γ of the form di

min(x) ≤
di(x) ≤ di

max(x), where

di
min(x) = ∇di(cγ) · (x − pi), (6)

di
max(x) = ∇di(cγ) · (x − pi) + Bi

max,

∇di(cγ) is the unit vector ∇di(cγ) = (pi − cγ)/‖pi − cγ‖,
Bi

max is the intercept of the upper bound and cγ is the center of the
rectangle γ. Note that ∇di(cγ) is not defined at the circle point
pi. As a result, the bounding functions di

min(x) and di
max(x) in

the rectangle containing the circle point pi are treated separately
at the end of this section. Now, it can be shown that Bi

max must
be the value of f(x) at one of the corners of the rectangle γ, i.e.
Bi

max = maxx∈corners(γ){d
i(x)−∇di(cγ) · (x−pi)}. These first

order bounds are tight and hence both monotonic and convergent.
They are also very simple to compute.

Rectangles γ which contain a circle point pi present difficul-
ties in the computation of the bounds di

min(x) and di
max(x) above,

as the distance function di(x) is non-differentiable at pi. Con-
sequently, these rectangles are bound by the constant functions
di

min(x) = minx′∈γ{d
i(x′)} and di

max(x) = maxx′∈γ{d
i(x′)}.

These bounds are also tight and hence are both monotonic and
convergent. However as they are zero order functions they con-
verge more slowly than the first order bounds described above. As
a result we use the first order bounds for rectangles which do not
contain any circle points, defaulting to the zero order bounds only
when necessary.

3.1.2. Bounding F

Combining these we may derive bounds Fmin and Fmax on the uni-
formly continuous log-likelihood function F :

Fmin(x) =
N∑

i=1

dmin
i(x)2 −

1

N

{
N∑

i=1

dmax
i(x)

}2

, (7)

Fmax(x) =
N∑

i=1

dmax
i(x)2 −

1

N

{
N∑

i=1

dmin
i(x)

}2

.

It is worth noting that the bounds di
min(x) and di

max(x) in the previ-
ous section were chosen to be uniformly non-negative, leading to
simple expressions for Fmin(x) and Fmax(x). Note that here we are
taking differences of 2nd order polynomials, and therefore obtain
quadratic bounds on the likelihood function F (x) over x ∈ γ.

Finally, we may minimise the quadratics Fmin and Fmax over
the associated rectangle γ to determine the bounds on the mini-
mum of F within this rectangle, i.e. Fmin[γ] = min[Fmin[γ]], and
Fmax[γ] = min[Fmax[γ]].

3.2. Complexity Analysis

A simple partition refinement scheme for Algorithm 1 is as fol-
lows. Set Γ to be a sufficiently large rectangle encapsulating the
the center of the circle. At each refinement step, split each rect-
angle in the partition into four smaller rectangles of equal size,
thereby ensuring that the rectangle diameter halves with each iter-
ation. Hence, the number of refinement steps is proportional to the
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Fig. 2. Simulation results.

negative logarithm of the desired precision δ in the location of the
global minimum.

In general Branch and Bound methods may have poor worst-
case complexity. However as ZHANG & KORF [11] note they of-
ten have low average complexity. Here we briefly mention the ma-
jor results of the arithmetic complexity of the proposed algorithm.

Theorem 3. The diameter of a partition has order O(D2).

Corollary 1. Each iteration of Algorithm 1 takes a constant amount
of time.

Corollary 2. As each iteration of Algorithm 1 improves the preci-
sion of the circle centre estimate ĉ by one bit in each coordinate,
the running time of the algorithm is proportional to the logarithm
of the desired precision of the circle centre estimate.

4. SIMULATIONS

For the experiments in this paper an initial rectangle was selected
which was centered on the points and had an area 100 times that
of the bounding rectangle of the points.

The brand and bound (B&B) algorithm was simulated using
a Monte-Carlo analysis. Twenty points with no noise (N = 20)
were generated with a uniform distribution around the circumfer-
ence of a unit circle. For each value of σ, the algorithm was eval-
uated over 10, 000 trials. In each trial, noise was added to the
true points to obtain estimates for the center of the circle ĉ and
radius r̂ according to CHAN’s circular functional model. This was
used to generate mean square error (MSE) values. The amount
of noise, σ was varied from 10−2 to 1 in equal geometric incre-
ments. The same was done for the DKE (DKE) [13], the centroid
method (CEN) by taking the mean of the x and y coordinates, the
SPÄTH algorithm (SPA) [5] and the CHERNOV & LESORT algo-
rithm (CL) [4]. Also, for the algorithm proposed in this paper, the
number of likelihood function evaluations was recorded in order
to demonstrate its independence to σ. See Figure 2(a).

The MSE values in centre, ĉ, and radius, r̂, are plotted against
their corresponding CRAMÉR-RAO lower bound (CRLB, see [12])
for the same level of noise σ in Figure 2(b) and 2(c) on a logarith-
mic scale. As the noise level, σ, approaches zero, all methods
except CEN approach statistical efficiency. The centroid method
levels off due to bias. The CHERNOV & LESORT method diverged
for the highest 4 values of noise and the results cannot be plotted.
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