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ABSTRACT

We consider the problem of jointly estimating the number as
well as the parameters of two-dimensional sinusoidal signals,
observed in the presence of an additive white Gaussian noise
field. In this paper we prove the strong consistency of a large
family of model order selection rules, which includes the MAP
based rule as a special case.

1. INTRODUCTION

We consider the problem of jointly estimating the number as well
as the parameters of two-dimensional sinusoidal signals, observed
in the presence of an additive white Gaussian noise field. This
problem is, in fact, a special case of a much more general prob-
lem: From the 2-D Wold-like decomposition we have that any
2-D regular and homogeneous discrete random field can be repre-
sented as a sum of two mutually orthogonal components: a purely-
indeterministic field and a deterministic one. In this paper we con-
sider the special case where the deterministic component consists
of a finite (unknown) number of sinusoidal components, while the
purely-indeterministic component is assumed to be a white noise
field.

Many algorithms have been devised to estimate the parame-
ters of sinusoids observed in additive white Gaussian noise. Most
of these assume the number of sinusoids is a-priori known. How-
ever this assumption does not always hold in practice. In the past
three decades the problem of model order selection for 1-D signals
has received considerable attention. In general, model order selec-
tion rules are based (directly or indirectly) on three popular crite-
ria: Akaike information criterion (AIC), the minimum description
length (MDL), and the maximum a-posteriori probability criterion
(MAP). All these criteria have a common form composed of two
terms: a data term and a penalty term, where the data term is the
log-likelihood function evaluated for the assumed model.

Most of the papers that address the problem of model order se-
lection are concerned with various models of one-dimensional sig-
nals, while the problem of modelling multidimensional fields has
received considerably less attention. Stoica et al., [9] proposed
a cross-validation selection rule and demonstrated its asymptotic
equivalence to the Generalized Akaike Information Criterion (GAIC).
The suggested criterion is not derived for any specific model. The
penalty term is given by kK(N) where k is the number of model
parameters, N is the length of the observed data vector, and K(N)
is some penalty term which is a function of N . In [5] this criterion
is employed to detect the number of sinusoids in 1-D and 2-D sig-
nals. The penalty term for 2-D signals is the same as in the 1-D

case. The penalty parameter is chosen as K(N) = c log log N
where c > 2. Stoica et al. in [9] and Li et al. in [5] arrived at
this choice of K(N), by using consistency arguments based on
[1]. However, in [1] consistency of an order selection criterion
for ARMA models is proved, while the model considered in [5]
is that of sinusoids in noise. Moreover, for the data model of 1-D
sinusoids observed in white noise, Quinn, [6], derives conditions
for strong consistency of any model order selection criterion. The
penalty term of the criterion in [5], does not satisfy Quinn’s con-
sistency conditions even for the 1-D problem. In [3], a maximum
a-posteriori (MAP) model order selection criterion for jointly es-
timating the number and the parameters of two-dimensional sinu-
soids observed in the presence of an additive white Gaussian noise
field, is derived.

In this paper, we establish the strong consistency of a large
family of model order selection rules, which includes the MAP
based rule as a special case.

2. NOTATIONS AND DEFINITIONS

Let {y(s, t)}, (s, t) ∈ Ψ(S, T ) where Ψ(S, T ) = {(i, j)|0 ≤ i ≤
S − 1, 0 ≤ j ≤ T − 1} be the observed 2-D real valued random
field such that

y(s, t) = h(s, t) + u(s, t). (1)

The field {u(s, t)} is a 2-D zero mean, white Gaussian field with
finite variance σ2. The field {h(s, t)} is the harmonic random
field. Assuming there are k sinusoidal components in the harmonic
field we have

h(s, t) =

k�

i=1

Ci cos(sωi + tνi) + Gi sin(sωi + tνi), (2)

where (ωi, νi) are the spatial frequencies of the ith harmonic. The
Ci’s and Gi’s are the unknown amplitudes of the sinusoidal com-
ponents in the observed realization.

Let us define the following matrix notations:

y = [y(0, 0) . . . y(0, T − 1) y(1, 0) . . . y(1, T − 1) . . .

. . . y(S − 1, T − 1)]T . (3)

The vectors u and h are similarly defined. Rewriting (1) we have
y = h + u. Also define

ak = [C1 G1 C2 G2 . . . Ck Gk]T . (4)

Let

ei = [ej[0ωi+0νi] ej[0ωi+1νi] . . . ej[0ωi+(T−1)νi] . . .

. . . ej[(S−1)ωi+(T−1)νi]]T , (5)
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and let us define the following ST × 2k matrix

Dk = [Re(e1) Im(e1) Re(e2) Im(e2) . . . Re(ek) Im(ek)] .
(6)

Using the foregoing notations we have that

y = Dkak + u. (7)

Let {Ψi} be a sequence of rectangles such that

Ψi = {(s, t) ∈ Z2 | 0 ≤ s ≤ Si − 1, 0 ≤ t ≤ Ti − 1}.
Definition 1: The sequence of subsets {Ψi} is said to tend to

infinity (we adopt the notation Ψi → ∞) as i → ∞ if

lim
i→∞

min(Si, Ti) = ∞

and
0 < lim

i→∞
(Si/Ti) < ∞.

To simplify notations, we shall omit in the following the subscript
i. Thus, the notation Ψ(S, T ) → ∞ implies that both S and T
tend to infinity as functions of i, and at roughly the same rate.

Let θk ∈ Θk denote the parameter vector of the harmonic
field, i.e.,

θk = [C1 G1 ω1 ν1 . . . Ck Gk ωk νk]T , (8)

where for all l, Cl, Gl are real and bounded. Assume further that
ωl, νl ∈ (0, 2π) where min(|ωl −ωj |) ≥ δ or min(|νl − νj |) ≥
δ for l �= j. Hence, the parameter space, Θk, is a subset of the 4k
dimensional Euclidian space. By the above assumption we further
conclude that Dk has rank 2k, and that the corresponding 2k×2k
Gram matrix DT

k Dk is of rank 2k as well.
Let m denote the actual number of sinusoidal components in

the observed field and let Ai =
�

C2
i + G2

i denote the amplitude
of the ith sinusoid. It is assumed that the amplitudes are strictly
positive and bounded. For convenience, and without loss of gen-
erality, it is further assumed that the sinusoidal components are
indexed according to a descending order of their amplitudes where
A1 ≥ A2 ≥ . . . ≥ Am > 0.

Let P⊥
k denote the projection matrix defined by

P⊥
k = I2k − Dk(DT

k Dk)−1DT
k . (9)

where I2k is an 2k × 2k identity matrix. Under the normality
assumptions of the noise field, the maximum likelihood estimate
(MLE) θ̂k of θk is the same as the nonlinear least square estimate
(LSE) and is obtained through minimization of the quadratic form
yT P⊥

k y. Let P̂⊥
k denote the matrix P⊥

k , with θk substituted by
θ̂k.

Let p(k) denote the a-priori probability of the kth model,
where k denotes the unknown number of sinusoidal components
in the data model given by (1), (2).

It is assumed that there are Q competing models, where Q >
m, and that each model is equiprobable. That is

p(k) =
1

Q
, k ∈ ZQ, (10)

where
ZQ = {0, 1, 2, . . . , Q − 1}.

Following the MDL-MAP template, define the statistic

χξ(k) = ST log(yT P̂⊥
k y) + ξk log ST, (11)

where ξ > 8 is a finite constant and k ∈ ZQ.
The number of 2-D sinusoids m is estimated by minimizing

of χξ(k) over k ∈ ZQ

m̂ = arg min
k∈ZQ

�
χξ(k)

�

= arg min
k∈ZQ

�
ST log(yT P̂⊥

k y) + ξk log ST

�
. (12)

We finally note that the choice of ξ = 10 in (12) yields the
MAP model order selection rule derived in [3], while the choice
of ξ = 4 in (12) corresponds to a “naive” application of a model
order selection rule based on the MDL principle, [8].

3. CONSISTENCY OF THE CRITERION

The objective of this section is to prove the asymptotic consistency
of the model order selection procedure in (12).

Theorem 1 Let m denote the correct number of sinusoids in the
field, and let m̂ be given by (12) with ξ > 8. Then as Ψ(S, T ) →
∞

m̂ → m a.s. (13)

Proof: Let

σ̂2
k =

yT P̂⊥
k y

ST
(14)

denote the variance of the residual field obtained after the removal
of the k most dominant estimated sinusoidal components of the
observed field.

Let Âi denote the ML estimate of Ai. Hence, for k ≤ m we
have as Ψ(S, T ) → ∞

σ̂2
k = σ2 +

1

2

m�
i=1

A2
i − 1

2

k�
i=1

Â2
i + o(1) a.s. (15)

(See Appendix A for the detailed derivation of (15)). Since under
the normality assumption of the noise field, the maximum likeli-
hood estimate θ̂k of θk is the same as the nonlinear least square
estimate, we conclude using Theorem 1, [4] that as Ψ(S, T ) → ∞

Âi → Ai a.s. i = 1 . . . k (16)

Hence, as Ψ(S, T ) → ∞

σ̂2
k → σ2 +

1

2

m�
i=k+1

A2
i a.s. (17)

and similarly

σ̂2
k−1 → σ2 +

1

2

m�
i=k

A2
i a.s. (18)

Using (14) we can write the criterion function in the next form

χξ(k) = ST log(ST σ̂2
k) + ξk log ST

= ST log ST + ST log σ̂2
k + ξk log ST. (19)
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Therefore, for k ≤ m,

χξ(k − 1) − χξ(k)

= ST log ST + ST log σ̂2
k−1 + ξ(k − 1) log ST

−ST log ST − ST log σ̂2
k − ξk log ST

= ST log

�
σ̂2

k−1

σ̂2
k

�
− ξ log ST. (20)

Since log ST
ST

tends to zero, as Ψ(S, T ) → ∞, then as Ψ(S, T ) →
∞

(ST )−1(χξ(k−1)−χξ(k)) → log

�
1+

A2
k

2σ2 +
�m

i=k+1 A2
i

�
a.s.

(21)

Since log

�
1+

A2
k

2σ2+
�m

i=k+1 A2
i

�
is strictly positive, we have χξ(k−

1) > χξ(k). Hence, for k ≤ m, the function χξ(k) is monotoni-
cally decreasing with k.

We next consider the case where k = m + l for any integer
l ≥ 1.

Let

Iu(ω, ν) =
2

ST

����
S−1�
s=0

T−1�
t=0

u(s, t)e−j[sω+tν]

����
2

(22)

denote the periodogram of the noise field (scaled by a factor of
2). Based on [2], Theorem 2.2 we have that if {u(s, t)} is a two-
dimensional i.i.d. zero-mean real valued field with variance σ2

such that
E[u(0, 0)2 log |u(0, 0)|] < ∞,

then

lim sup
Ψ(S,T )→∞

sup
ω,ν

Iu(ω, ν)

σ2 log(ST )
≤ 8 a.s. (23)

It is easy to check that indeed when {u(s, t)} is a Gaussian white
noise field the condition E[u(0, 0)2 log |u(0, 0)|] < ∞ is satis-
fied. Indeed,

E[u2 log |u|] = E[u2 log |u|1{|u|≥1}] + E[u2 log |u|1{|u|<1}],

where

E[u2 log |u|1{|u|≥1}] ≤ E[u41{|u|≥1}] ≤ E[u4] = 3σ4,

while for |u| < 1 the function u2 log |u| is bounded and has a

minimum at |u| = exp− 1
2 and this minimum is −0.5e−1. Thus,

0 ≥ E[u2 log |u|1{|u|<1}] ≥ −0.5e−1P (|u| < 1}) ≥ −∞.

Since the noise field is Gaussian, the MLE θ̂k of θk and the
LSE of θk are identical. Hence, we have that a.s. as Ψ(S, T ) →
∞

σ̂2
m+l = σ̂2

m − Ul

ST
+ o

�
log ST

ST

�
, (24)

where

Ul =

l�
i=1

Iu(ωi, νi) (25)

is the sum of the l largest elements of the periodogram of the noise
field {u(s, t)} (see Appendix B for a detailed derivation of (24) ).
Clearly

Ul ≤ l sup
ω,ν

Iu(ω, ν). (26)

From Theorem 2, [7] as Ψ(S, T ) → ∞
σ̂2

m → σ2 a.s. (27)

Similarly to (19) and (20), a.s. as Ψ(S, T ) → ∞,

χξ(m + l) − χξ(m)

= ST log ST + ST log σ̂2
m+l + ξ(m + l) log ST

−ST log ST − ST log σ̂2
m − ξm log ST

= ξl log ST + ST log

�
1 − Ul

STσ2
+ o

�
log ST

ST

��

= ξl log ST −
�

Ul

σ2
+ o(log ST )

�
(1 + o(1))

= log ST

�
ξl − Ul

σ2 log ST
+ o(1)

�

≥ log ST

�
ξl −

l sup
ω,ν

Iu(ω, ν)

σ2 log ST
+ o(1)

�

= l log ST

�
ξ −

sup
ω,ν

Iu(ω, ν)

σ2 log ST
+ o(1)

�
, (28)

where the second equality is obtained by substituting σ̂2
m+l and

σ̂2
m using the equalities (24) and (27), respectively. The third

equality is due to the property that for x → 0, log(1 + x) =

x(1 + o(1)), where the observation that the term Ul
σ2ST

tends to
zero a.s. as Ψ(S, T ) → ∞ is due to (23).

Substituting (23) into (28) we conclude that

χξ(m + l) − χξ(m) > 0 (29)

for any integer l ≥ 1. Therefore, a.s. as Ψ(S, T ) → ∞, the
function χξ(k) has a global minimum for k = m.

4. CONCLUSIONS

In this paper we have established the strong consistency of a fam-
ily of model order selection rules for the problem of estimating
two-dimensional sinusoidal signals, observed in the presence of
an additive white Gaussian noise field. The MAP model order se-
lection rule derived in [3] belongs to this family of model order
selection criteria.

5. APPENDIX A

σ̂2
k =

yT y

ST
− yT P̂ky

ST
=

uT u

ST
+

uT Dmam

ST

+
aT

mDT
mu

ST
+

aT
mDT

mDmam

ST
− âT

k D̂T
k D̂kâk

ST
, (30)

where
âk = (D̂T

k D̂k)−1D̂T
k y. (31)

By the SLLN , a.s. as Ψ(S, T ) → ∞,

uT u

ST
→ σ2. (32)

From Lemma 3, [7] we have that a.s. as Ψ(S, T ) → ∞
uT Dmam

ST
= o(1). (33)
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Recall that for ω ∈ (0, 2π)

S−1�

s=0

exp(jωs) = O(1). (34)

Therefore, for each θm ∈ Θm, as Ψ(S, T ) → ∞,

[Ci Gi] [Re(ei) Im(ei)]
T [Re(ej) Im(ej)] [Ci Gi]

T

ST

=

�
A2

i
2

+ o(1), i = j
o(1), i �= j

(35)

and then

aT
mDT

mDT
mam

ST
=

m�
i=1

A2
i

2
+ o(1). (36)

Similarly, since θ̂k is the maximum likelihood estimate of θk

and θk ∈ Θk

âT
k D̂T

k D̂T âk

ST
=

k�
i=1

Â2
i

2
+ o(1) a.s. (37)

Substituting (33), (36) and (37) into (30) we have (15).

6. APPENDIX B

Let (ω̂m+1, υ̂m+1) denote the largest element of the periodogram
of the noise field {u(n, m)}, i.e.,

(ω̂m+1, υ̂m+1) = arg max
(ω,υ)∈(0,2π)2

Iu(ω, υ) (38)

and let

Âm+1 =
2

ST

S−1�
s=0

T−1�
t=0

u(s, t)e−j(sω̂m+1+tυ̂m+1). (39)

Let Ĉm+1 = �(Âm+1) and Ĝm+1 = �(Âm+1) . Let êi denote
the vector ei defined in (5), with (ωi, νi) substituted by (ω̂i, ν̂i).

Using a straightforward extension of [4], Theorem 2, we have
that in the case where the model order is over-estimated the ML es-
timate contains a subvector that converges a.s. as Ψ(S, T ) → ∞
to the correct parameters of the sinusoidal signals, while the fre-
quencies of the sinusoids that result from the over-estimated order
assumption are assigned to the spatial frequencies that maximize
the noise periodogram. Hence,

σ̂2
m+1 =

yT y

ST
− âT

m+1D̂
T
m+1D̂m+1âm+1

ST

=
yT y

ST
− âT

mD̂T
mD̂mâm

ST
− M1 − M2 = σ̂2

m − M1 − M2,(40)

where

M1 = 2
[Ĉm+1 Ĝm+1] [Re(êm+1) Im(êm+1)]

T D̂mâm

ST
(41)

and

M2 =
|Âm+1|2

2
+

Ĉm+1Ĝm+1

ST

S−1�
s=0

T−1�
t=0

sin(2sω̂m+1 + 2tυ̂m+1)

+
Ĉ2

m+1 − Ĝ2
m+1

2ST

S−1�
s=0

T−1�
t=0

cos(2sω̂m+1 + 2tυ̂m+1). (42)

From (34), for ω ∈ (0, 2π) , as S → ∞, we have

1

S

S−1�
s=0

exp(jωs) = o

�
log S

S

� 1
2

. (43)

Since |Âm+1|2
2

=
Iu(ω̂m+1,ν̂m+1)

ST
, by (23)

|Âm+1| = O

�
log ST

ST

� 1
2

. (44)

Obviously, the amplitudes Ĉm+1 and Ĝm+1 have the same order.
From [4], for each 1 ≤ i ≤ m, (ω̂m+1, ν̂m+1) �= (ω̂i, ν̂i).

Therefore, for each 1 ≤ i ≤ m, using (43) and (44), we conclude
that

M1 = o

�
log ST

ST

�
. (45)

Since Ĉm+1 and Ĝm+1 are both of an order O

�
log ST

ST

� 1
2

, we

have using (43) that the sum of the last two terms of M2 is of

order o
�

log ST
ST

� 3
2 . Therefore,

M2 =
|Âm+1|2

2
+ o

�
log ST

ST

� 3
2

=
Iu(ω̂m+1, υ̂m+1)

ST
+ o

�
log ST

ST

� 3
2

. (46)

Substituting (45) and (46) into (40), we have

σ̂2
m+1 = σ̂2

m − Iu(ω̂m+1, υ̂m+1)

ST
+ o

�
log ST

ST

�
. (47)

Similarly, one can derive (24).
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