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ABSTRACT

This article deals with the joint detection of bits for a spread-
spectrum system based on random permutations, in the case of
a transmission over frequency-selective channels. A linear min-
imum mean-squares error approach is studied, whose objective
consists of mitigating both the multi-access interference and the
inter-symbole interference. The proposed system is compared with
the DS-CDMA system. The theoretical study is con�rmed by sim-
ulation results.

1. INTRODUCTION

Spread spectrum systems consitute one of the most important multiple-
access techniques considered for the third generation of mobile
systems. Direct-sequence CDMA (DS-CDMA) and Frequency-
Hopping CDMA are the most two common. However, other tech-
niques can be investigated, which present equivalent spreading
capabilities, and allow multiple access. In particular, Periodic
Clock Changes (PCC), which are a particular case of linear peri-
odic time varying �lters, are useful for multiple access because of
their spreading properties [5], [7]. In this article, a sub-class of dis-
crete PCC, called permutations, is studied. The joint detection in
the case of Random Permutation-based Multiple Access (RPMA)
has been studied in previous works [1], [2], [5], [7]. Moreover,
many detectors can be found in the literature for CDMA systems
(see for instance [6], [8] and references therein). In this paper we
study a Linear Minimun Mean Squares Error (LMMSE) detector,
in the case of a transmission over frequency selective fading chan-
nels. Section 2 presents the random permutation technique, and
the RPMA signal model in its continuous and discrete forms. The
LMMSE detector is studied in Section 3 for the RPMA system, as
well as for the DS-CDMA system� theoretical bit error rates (BER)
are then provided. Simulation results are given in section 4, which
show a comparison between the RPMA system and a DS-CDMA
system based on Gold codes.

2. PROBLEM FORMULATION

2.1. The permutation process

Consider a sequence of equiprobable bits ������� (�� � �������).
This sequence is modulated using an antipodal baseband code (for
instance NRZ or biphase), with duration � and waveform pattern
����. The modulated process ���� is then de�ned by ���� ��

��� ��� �� � �� �. This process is sampled with a sampling
period ��, such that �� � ���� is an integer number. �� is then
the number of samples per bit. Let ������� denote this sampled
sequence. This sequence is transformed into a new sequence 	�

as follows: considering blocks of �� consecutive bits, the ����

samples �� corresponding to a given block are permuted using an
uniformly distributed permutation of the set ��
 � � � 
 ����� (this
permutation is the same for all blocks). The new sequence 	�

is the resulting sequence, where samples are permuted block by
block, from those of ��. The autocorrelation function and the
power spectral density of the sequence �	����� can be derived
from those of the sequence �������� in particular, the power spec-
tral density of �	����� is spreaded by a factor �� with respect to
the one of ������� [5]. Consequently, this permutation proce-
dure, which can be regarded as a particular case of periodic clock
changes [4], is a spread-spectrum technique. We propose in this
paper to use this technique as a multiple access system, and to
study the associated multi-user detection problem.

Denote �� �
�
����������
 � � � 
 ����

��
as the �th block of

bits, and � � ���
 � � � 
 ���
�� as the result of the sampling

of the waveform pattern ����. Then, the �th block of sequence
�������, i.e. the vector �� �

�
������������
 � � � 
 ������

��
can be expressed as: �� � ���, where  � �� � ���

is the
�� � ������ matrix de�ned by

 �

�
��

�� 	 � � �
	

. . .
. . .

� � � ��

�
�	

(� denotes the Kronecker product, and �� is the identity matrix
of order �). Now, if � denotes the ������ � ������ permu-
tation matrix, the �th block of sequence �	�����, i.e. the vector

�� �
�
	�����������
 � � � 
 	�����

��
can be written as: �� �

��� � ���� . The sequence �	����� is then transformed into
a continuous-time process using a rectangular waveform signaling,
yielding the process

���� �


���

����

���

�
����

�
�
� �� � ��� � ���� �

where ���� denotes the �th component of any vector �, and ���� is
the indicator function over �	� ���.

2.2. Modelling of the multi-user signal

Consider the asynchronous transmission of � users using the spread-
spectrum technique given in the above section. Let ����, �� and
����� denote respectively the �th block of bits, the permutation
matrix, and the continuous-time process associated to user �. The
case of a �at fading channel has been studied in [2]. Here, we
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consider transmissions over frequency-selective fading channels.
More precisely, the radio channel of the �-th user is given by �:

����� �
�

���

����� �� � �����

where ���� is the (complex) gain of the �th path of the �th user, ����
is the propagation delay, and � is the Dirac function. It is assumed
in this paper that the coherence time of the channel is greater than
the signal duration � consequently, the coef�cients ���� can be con-
sidered as constant for all users’ bit. The continuous-time received
signal is a �nite length signal formed by � blocks. It can then be
expressed as:

���� �
��
���

��
���

��
���

�����
���

����

��

	����
�
�
�

� �� � ��
 � ���� � ����� � ����

where ���� is an additive white Gaussian noise (AWGN) with vari-
ance ��, independent of the transmitted signals.

2.3. The discrete asynchronous signal model

The �rst step of the detection consists of passing the continuous
received signal ���� through a �lter bank. These �lters are matched
to the signaling function ���� delayed by the delays ����, i.e., there
is a matched �lter for all users and all delays. More precisely, the
output of these matched �lters at time � is given by:�

����� �� � � � ����� �� , � � �
 � � � 
 �� � � �
 � � � 
 �

De�ne variables ��������� as the outputs of the above matched �l-
ters at times � � �� � ����
��
, for � � �
 � � � 
 �
�� and
� � �
 ���
 �, i.e.

��������� �
�

����� �� � ��
 � ���� � ����� �� ,

for � � �
 � � � 
 �
 � � �
 � � � 
 �
 � � �
 � � � 
 �
��
 and � �
�
 ���
 �. De�ne then vectors ������ � ����������
 �������
�
 � � � 


��������
����
	 , ���� � ��	�����
�

	
�����
 � � � 
�	������

	 , �� � ��	���


�	���
 � � � 
�
	
����

	 , and � � ��	� 
��
 � � � 
�
	
� �. De�ne in the same

manner ���� , �� , and �.Vectors � and � are thus the concate-
nation of all outputs of the matched �lters, and of all bits, re-
spectively. � is a suf�cient statistic for �. Indeed, given the fact
that the data are independent and equiprobable, and that the noise
is AWGN, the optimal detector consists of minimizing the error�
������ ��������� with respect to�. Now, it is not dif�cult to show

that this error only depends on the received signal ���� through the
variables ���������. Consequently, the proposed detector is based
on the statistic �, which is referred to as the data. Then, � can be
expressed as:

� � ��	�� 
 (1)

where 
 is a zero-mean Gaussian vector with covariance matrix
��� and matrices �, �, and 	 are detailed in Appendix 6.1.
The objective of the detector derived below is to mitigate simulta-
neously the multiple-access and inter-symbol interferences, along
with the aditive noise.

�In fact, the number of paths is generally not equal for all users. How-
ever, one can consider � as the maximum of the path lengths, annulling
gains ���� if necessary.

Note that matrices �, �, and 	 are huge, since they have di-
mensions ��
���������
������, ��
�����������

���, and ������� � ������, respectively. However, the
memory and computationnal costs can be drammatically reduced
given the fact that they are sparse matrices. For instance, us-
ing parameters used for �g. 1 (see section 4), matrix � contains
only 	���� of non-zero elements. Also, matrices � and 	 have
��
���� and ����� non-zero elements, respectively.

3. THE LMMSE DETECTOR

3.1. The RPMA case
It is assumed in this section that the channel coef�cients are known
by the receiver. The LMMSE estimator consists of estimating bits�������� by a linear transformation of the received data �, i.e.

�������� � � !�
�
������

	�
�

where ������ is the vector which minimizes the mean-square er-

ror "
�

�������� �	�
���

with respect to � � �
������� . This

minimization can be performed for all bits by considering the prob-
lem in the following matrix form:

��
�

"
���������

(the matrix norm is de�ned by �#� �

��$�%


##	

�����
). This

problem can be solved using the Bayesian Gauss-Markov theorem
( [3], p. 391): given eq. (1), and the fact that i) � is a zero-mean
vector with covariance matrix equal to ����� , and ii) 
 is a zero-
mean Gaussian vector with covariance matrix ���, the optimal
matrix � is given by

� �
�
������� �		

���
	�	

where � �	�� is a symmetric matrix (since� is symmetric).
The estimated bit vector �� can then be written as �� � � !� ����.

3.2. The DS-CDMA case

We propose to compare the LMMSE approach for RPMA and DS-
CDMA systems. With DS-CDMA, the bits ����� of the �-th user
are modulated by a signature waveform ����� which is assumed to
be zero outside the interval �	
 � �. The signal transmitted by user
� is then ������ � 


���

��������� � �� � ,

and the received signal, when �� bits are transmitted per user, can
be expressed as:

����� � �

���

�

���

��

���

������������� � �� � ����� � ����

In that case, the suf�cient statistic vector �� is formed by the out-
puts of the �lters matched to signatures ���� � �� � �����, � �
�
 � � � 
 �
 � � �
 � � � 
 �, � � �
 � � � 
 ��. �� can then be written as:

������	���

where �� is a matrix depending on the correlations between (shifted)
signatures, �	 is a matrix depending on the channel coef�cients,
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and �
 is a zero-mean Gaussian vector with covariance matrix �� ��.
Using the Bayesian Gauss-Markov theorem, the LMMSE decision
is given by ���� !�� �����, where

���
�
������ �

�	� ���	��� �	� .

3.3. Performance

De�ne� �	�	with � ���� for the RPMA (resp. � ��	��	 with  � � for the DS-CDMA). The decision for � can
be expressed as: ���� !� ������, where� �


�����

���
� and � is a zero-mean complex Gaussian vector with covariance
matrix � � ��


�����

���
�


�����

���
.

It can then be shown using Bayes’ formula that the BER for
the �-th bit of vector � is given by:

�� � 
�����



�������������������
&

�
��

�����
�
� ���

������

����

�
��

where &��� �
� ��
�

��
��

%�	
�
���, and 	�	 is the length of vec-

tor � (	�	����� for RPMA, 	�	���� for DS-CDMA). Now,
the computational cost of this formula grows exponentially with �
and/or �� and/or �: it is therefore useless in practice. However,
using the Central Limit theorem, it is possible to use a Gaussian
approximation, which yields to:

�� 
 &

�
��
�
�	����	� �

�
����� �



� ���

	����	�
�
�
�
�
�
�

�
��

Now, this BER has been obtained with �xed channel coef�cients.
It should then be averaged with respect to the distribution of the
coef�cient vector (e.g., a complex Gaussian distribution, with co-
variance matrix derived for instance from the so-called WSSUS
assumption). However, this cannot be achieved analytically. The
multiple integration can be done numerically for a very small num-
ber of coef�cients, i.e. for a small number of users and a small
number of paths (typically, � � 
 and � � 
). Otherwise, the
integration can also be approximated by forming a Markov chain
using the Metropolis algorithm, which allows to obtain, after a suf-
�cient burn-in, an estimated value which converges to the actual
one. However, the convergence can be very slow, when the num-
ber of coef�cients is moderately high. In such case, one resorts to
Monte-Carlo simulations to approximate the mean BER. Finally,
this mean BER would be obtained for �xed users delays. Now,
these offsets can also be considered as random variables, and the
previous mean BER should also be averaged with respect to the
distribution of these offsets. Here again, this can only be done by
using Monte-Carlo simulations.

4. SIMULATION RESULTS

Many Monte-Carlo simulations have been performed to validate
the theoretical results. In order to obtain the theoretical BERs as a
function of the Signal-to-Noise Ratio (SNR) for any set of model
parameters, it is necessary to have an expression of this SNR with
respect to the parameters. This study is achieved in Appendix 6.2.
Fig. 1 shows a comparison between theoretical and simulated (us-
ing 
		 Monte-Carlo runs) BERs for the RPMA case. The param-
eters used for these simulations are: � � � users, �� � � bits per

block, � � �	 blocks, the spreading factor is equal to �� � �,
and the number of paths is � � �. Delays and channel coef�-
cients have been randomly chosen. This �gure presents the BERs
obtained for the �� bit of the ��� block for the � users. Clearly,
simulations con�rm the theoretical study. The differences between
the results are due to the difference between channels of each user,
which implies that the components of each user in the received sig-
nal have different powers. Now, the LMMSE detector mitigates in
general the so-called near-far effect, for CDMA [8], as well as for
RPMA [2]. However, in the case of frequency selective channels,
this mitigation is much more dif�cult, whereas it could be seen that
it is much more ef�cient than with a simple matched �lter at the
receiver. Moreover, it could also be seen (which is not shown on
this �gure, for clarity reasons), that, even for a same user, there are
differences between results associated to different bits of a given
block. Indeed, different correlations between bits of a given user
are assigned by the random permutations, thus the bits do not have
the same power.

The LMMSE detector for the RPMA system is next compared
with the corresponding detector for DS-CDMA systems. The CD
MA transmission has been performed using Gold codes, with �
chips per signature, which is similar to the number of “chips”
�� � � for the RPMA system. Here, a set of Gold codes is de�ned
by a particular choice of 4 codes among 9 possible codes, along
with a random delay from 0 to 6 chips. Given the fact that the
chip duration is identical for both systems, the delays for CDMA
case have been normalized with respect to those of RPMA, in or-
der to conserve the same inter-symbol interference. Moreover, the
performance of the detector depends on the choice of the set of
permutations (or codes) of the users. Consequently, the compar-
ison between RPMA and CDMA cannot be done using only one
set of permutations and one set of codes, but must be achieved for
a large number of sets. Thus, Fig. 2 and 3 show the theoretical re-
sults obtained for the RPMA and the DS-CDMA for 100 random
permutation sets and 100 code sets, respectively. It can be con-
cluded that both multiple access techniques perform similarly for
this context of transmission.

5. CONCLUSION

This paper studied a spread-spectrum system based on random
permutations (RPMA), in the case of a multi-user transmission
over frequency selective fading channels. A linear MMSE de-
tector has been proposed, which attempts to reduce simultane-
ously the multiple-access interference, the inter-symbol interfer-
ence, and the additive noise. Theoretical performance has been
derived, which is validated by Monte-Carlo simulations. A dis-
cussion on the choice of the permutations can be found in [1]: an
optimal set of permutations (in the sense that it minimizes the er-
ror probability) can be obtained by using particular optimization
algorithms, such as simulated-annealing algorithm or genetic algo-
rithm. The LMMSE detector for RPMA was next compared with
the LMMSE detector derived for DS-CDMA: theoretical curves
prove that both methods yields quite similar results in terms of
BER. The next step of this study will consist of considering the
case of time-selective (along with frequency-selective) fading chan-
nels. In such a case, one can expect that the RPMA system perform
better than the CDMA system: indeed, since the bits are spreaded
in time with the RPMA, this system should be less sensitive with
respect to fades, and there should then be less bursts of errors. For
the same reason, the channel coef�cient estimation should give
better results in the RPMA case. This estimation is necessary in
practice, where the assumption of known coef�cients, which is re-
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quired by the LMMSE detector, seems quite unrealistic. Another
technique to overcome the problem of the knowledge of these co-
ef�cients would be to consider an adaptive version of the LMMSE
detector. These issues are currently under investigation.

6. APPENDIX

6.1. Expression of vector �
Denote ����� � ���� � ���� . ����� can be expressed in an unique
way as ����� � '������ � (����, where '���� is an integer, and (���� �
�	
 ���. De�ne now )���

�

����
��
 ��� � �

��
	(���� � (�

�

����� 	���
���

���
�

�����
,

)
����

������
 ��� � �

��
	(���� � (�

�

����� 	����

�����
���

���

(where �	�� � � if

$ * � and �	�� � 	 otherwise), and +���
�

������
 ��� � �� �

��
	(�����

(�
�

����� 	. Then, de�ne the ������ � ������ matrix �����

������
 ���

such that its �-th row is �	
 � � � 
 	
 )���
�

����
��
 ���
 +���

�

������
 ���
 )
����

������
 ���
 	


� � � 
 	�, where +���
�

������
 ��� occurs at the �� � '���� � '�
�

������-th

column. Let ����
�

���� be the block matrix whose block ��
 ��� is

����
�

������
 ���, and ����� be the block-matrix whose block ��
 ��� is

����
�

���� . Finally, denote � as the block-matrix whose block ��
 ���
is ����� . It can be shown that � is a symmetric matrix.

De�ne� � �
���� ��� where � is a �������������
block-diagonal matrix, whose �-th diagonal block is the ������
� matrix ��

� � de�ne also	 � �
�,, where , is a �������
����� block matrix such that , �

�
,�
� 
 ,�

� 
 � � � 
 ,�
�

��
, with

,� � � $! ������
 ����
 � � � 
 ������ � ��
. Then, it can be shown

that � can be written as:

� � ��	�� 


6.2. Autocorrelation and power of the received signal
Denote ����� � ��������� as the uncorrupted received signal, and
����� � ����� � �����. Assuming an antipodal modulation and
equiprobable bits, the random processes ����� and ����� are zero-
mean. Thus, since all users and all channels are statistically inde-
pendent, the total power �

�� is obtained by �
�� �

��

���
���where

��� is the power of the process �����. For �xed (i.e. non-random)
channel coef�cients,

��� �
�


������

�����
�

������������ � ������

where ��� ��� is the autocorrelation function of the process �����.
It can be shown that

����� � �

�� � �

�
���


� �
�
� � ����


� � � �

�
where � � � �

��
, � � is the integer part of � �, � � � � � � � � is

the decimal part, and ������ is the autocorrelation function of the
sequence �	����� associated to user � (this autocorrelation can
be obtained from the expression given in [5]).
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