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ABSTRACT
This paper provides a new frequency estimator based on the

multiple lags of autocorrelations with discrete Fourier transform

(DFT) phase unwrapping. It is proved that this estimator is ef-

ficient for short data length while maintaining a low signal noise

ratio (SNR) threshold. It is also shown that this estimator is statis-

tically similar to maximum likelihood estimator (MLE), but with

lower computational load. Furthermore, the estimator can also be

applied to frequency estimation in the presence of moving aver-

age (MA) colored noise. In this case, it is shown that the variance

of the estimator achieves the Cramér-Rao bound (CRB) asymp-

totically.

1. INTRODUCTION

Estimating the frequency of a single sinusoid in additive white

Gaussian noise (AWGN) arises in many signal applications [1].

MLE is known to be an excellent estimator especially at low SNR.

However, the computation burden involved in the search of the

maximum is quite large and often sub-optimal methods are used.

The pulse pair method is a simple technique which is widely used

in radar and sonar applications [2–5], but it suffers from a high

SNR threshold. (In this paper we use the term ”SNR threshold”

to identify the SNR value where estimation accuracy starts to de-

viate appreciably from the CRB). As an extension to the pulse pair

method, frequency estimation from proper sets of correlations is

investigated in [6]. By choosing a proper set of correlations, the

accuracy of the estimator was improved. One disadvantage of

using multiple lag correlations is the introduction of phase un-

wrapping. To resolve the phase ambiguity, the Chinese remain-

der theorem (CRT) was used in [6, 7], but the SNR threshold is

still higher than MLE. In this paper, we propose a new technique

based on the use of multiple lags of correlations in conjunction

with DFT. This estimator is proposed as an efficient frequency

estimator for short data samples and its SNR threshold value is

comparable to that of MLE. More importantly, it is shown that by

using the correlations of higher lag values, this estimator can also

be applied to the efficient frequency estimation in the presence of

MA colored noise.

Estimation of parameters in the autoregressive(AR) noise was

discussed in [8]. It was shown that MLE estimation of the param-

eters in the noise signal model is approximately efficient. But

it leads to an involved computational problem, thus the nonlin-

ear least squares (NLS) technique was proposed as a simple fre-

quency estimator. Though it doesn’t require to estimate the noise

parameters, the data samples need to be zeropadded which affects

the accuracy of the NLS estimator [9]. In this paper, we propose a

novel estimator which is unbiased in the presence of MA colored

noise. It is proven that the variance of the estimator achieves CRB

asymptotically. The SNR threshold of the estimator is compara-

ble to MLE but it avoids the fine grid search of the MLE, hence is

computationally efficient.

2. FREQUENCY ESTIMATION FROM MULTIPLE LAGS
OF CORRELATIONS

Consider the signal received in AWGN channel

x(n) = Aejφejω0n + v(n), n = 1, 2, ....N − 1. (1)

where v(n) is a complex circular white Gaussian noise process

with variance σ2, φ is uniformly distributed in (0, 2π]. ω0 is the

angular frequency and ω0 ∈ [−π, π). A is the signal amplitude

and N is the number of data samples. SNR is defined as A2/σ2.

The angular frequency can be estimated from the mth lag auto-

correlation as

ω̂m + 2πl =
1

m
arg{r̂(m)}, (2)

for some integer l due to the nature of phase unwrapping, where

arg{·} represents the argument of the complex number, r̂(m) is

the autocorrelation of the received signal given by

r̂(m) =
1

N − m

N−m∑
n=1

x(n + m)x∗(n) (3)

It is known that the estimator in (2) is unbiased and its variance

achieves a minimum value for m = 2N/3 which is 0.51dB above

CRB [3, 4]. We note that by considering the multiple lags of cor-

relations, the accuracy of the estimation can be improved. With

proper phase unwrapping, the frequency can be estimated unbi-

asedly from every correlation lag m. Assume that it is ω̂m, m =
1, 2..K, K ≤ N − 1. Then a weighted linear estimator can be

defined as in [6]

ω̂0 =

K∑
m=1

amω̂m, m = 1, 2....K, K ≤ N − 1. (4)

where am’s are weight coefficients yet to be determined. For sim-

plicity, we restricts the estimator to be linear in the estimated fre-

quency data set. The variance of the estimator in (4) can be ex-

pressed as

E[(ω0 − ω̂0)
2] =

K−1∑
m=1

K−1∑
l=1

amalE[YmYl]

m(N − m)l(N − l)
(5)
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where E[YmYl] = σ2 min(N−m,m,N−l,l)

A2 [10].

2.1. Optimal Window Determination and Performance Anal-
ysis

The optimal weighting window for the linear estimator can be

obtained as in [1]

a =
R−11

1T R−11
(6)

where a = [a1, a2, ...aK ]T , 1 = [1, 1, ...1]T and R is the covari-

ance matrix of the frequency estimators from different correlation

lags. The (m, l)th element of R was derived in [10] as

Rm,l =
min(K − m, K − l, m, l)

(K − m)m(K − l)lSNR
. (7)

It was noted in [6] that R is rank deficient for K > N/2 and it

is not relevant to consider the case when K > N/2 for com-

plex reasons. But here we show that due to the symmetrical

property of Rm,l, we may first obtain half of the coefficients

am, m = 1, 2, ...(N − 1)/2 (without loss of generality, assume

N is odd) by inverting Rm,l(m, l ≤ (N −1)/2). Then their mir-

ror coefficients are obtained symmetrically around (N − 1)/2.

By a polynomial curve fitting technique given in [1], am can be

obtained as a parabolic window

am =
6m(N − m)

N(N2 − 1)
m = 1, ...N − 1. (8)

Considering the symmetry property of the window and covariance

matrix, we will only use (N − 1)/2 number of correlation lags to

estimate the frequency. Thus (5) for K = (N − 1)/2 becomes

E(ε2) =
144

SNRN2(N2 − 1)2

N−1
2∑

m=1

N−1
2∑

l=1

min(m, l) (9)

which leads to

E(ε2) =
6

SNRN(N2 − 1)
(10)

This is the CRB in the presence of AWGN. The window to achieve

CRB is expressed as

am =
12m(N − m)

N(N2 − 1)
m = 1, 2, .....

N − 1

2
. (11)

Using a similar approach, for arbitrary K, (11) can be expressed

as

am =
3m(2K + 1 − m)

K(K + 1)(2K + 1)
, m = 1, 2...K, K ≤ N − 1

2
(12)

which is the same window derived in [6] using complicated recur-

sions. Furthermore, we can easily prove that the estimator with

the following mirror coefficients of (11) will also achieve CRB

am =
12m(N − m)

N(N2 − 1)
m =

N + 1

2
,
N + 3

2
, ....N − 1. (13)

Our novel estimator proposed in this paper is based on the mir-

ror coefficients. Simulation also confirms that the estimator with

(13) achieves CRB. At this point, we note that estimator in (4),

and thus both estimators using (11) and (13) need proper phase

unwrapping. However, in the presence of AWGN when CRT is

used to resolve phase unwrapping, the SNR threshold of the esti-

mator obtained from (13) will be much higher than that of (11).

In this paper, we shall use the DFT as the initial coarse search to

resolve phase unwrapping due to the excellent threshold charac-

teristics of DFT [11], so that (11) and (13) will lead to the same

SNR threshold. More importantly, we shall show in the next Sec-

tion that (13) can also be used efficiently in the frequency esti-

mation in MA colored noise. Fig.1 is the simulation of the mean

square error (MSE) of the estimator using multiple correlations

(K = 1, 2...(N − 1)/2) for different phase unwrapping tech-

niques. It is shown that the estimator with DFT phase unwrap-

ping is efficient and have lower SNR threshold compared to CRT

in [6] and Crozies phase unwrapping methods in [12]. From Fig.1,

we conclude that the MSE results using the coefficients (11) with

DFT phase unwrapping is as same as MLE, and use of the coeffi-

cients in (13) results in identical performance.
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Fig. 1. The Performance of frequency estimation as SNR varies,

for DFT phase unwrapping (solid line), CRT phase unwrap-

ping (circled line) and Crozier’s phase unwrapping (stared line).

N = 24, 64, Normalized frequency f = 0.124, compared with

CRB(dashed line)

2.2. Relation With MLE

The optimal solution of the MLE frequency estimate results from

locating the peak of the periodogam. That is

ω̂0 = max{I(ω)} (14)

where I(ω) is expressed as

I(ω) = |
N−1∑
n=0

x(n)e−jωn|2 =

N−1∑
n=0

N−1∑
k=0

x(n)x∗(k)e−jω(n−k)

(15)

To find the maximum of the periodogram, take the derivative of

(15) with respect to ω and set it to zero. Let n− k = m and after
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some manipulation, we obtain

N−1∑
m=0

m(N − m)Im{r̂(m)e−jω̂0m} = 0 (16)

where Im{·} is the imaginary part of a complex number, r̂(m) is

defined in (3). It can be shown that

Im{r̂(m)e−jω̂0m} ≈ mω̂0 − arg{r̂(m)} (17)

Insert (17) into (16), the weighted autocorrelation based frequency

estimate is obtained as

ω̂0 ≈
∑N−1

m=0(N − m)m arg{r̂(m)}∑N−1
m=0(N − m)m2

(18)

Thus the window related to MLE is given by

am =
(N − m)m2∑N−1

m=0(N − m)m2
(19)

The MLE relation by examining the periodogram was also dis-

cussed in [13]. But the window obtained in [13] is not optimal.

We notice that (19) approximately is a parabolic window, espe-

cially for large N . We have proved that the parabolic window in

(11) is optimal and the variance of the estimator is equal to CRB.

As such, it is seen that the estimator with (19) by examining the

periodogram is approximately efficient, while the estimator pro-

posed with the optimal window in (11) is efficient for any length

of data samples.

3. FREQUENCY ESTIMATION IN THE PRESENCE OF
MA COLORED NOISE

Assume the noise term in the signal model (1) is colored and can

be modelled as an order q MA process, which is expressed as

e(n) =

q∑
k=1

bkw(n − k) + w(n) (20)

where w(n) is a white noise process with variance σ2. e(n) is

obtained by passing AWGN through a filter with system function

B(z) = 1+b1z
−1 + ...bqz

−q . It is usually assumed that the filter

B(z) is minimum phased and the zeros are within the unit circle.

Then the spectral density of e(n) is given by

ψ(ω) = |1 +

q∑
k=1

bkejωk|2 (21)

Before deriving the variance of the frequency estimator from MA

colored noise, define: b = [1 b1e
−jω0 .....bqe

−jqω0 ]T , 1 =
[1 1.....1]T , w = [w(n) w(n − 1)....w(n − q)]T , where [·]T
denoting transposition. Then the signal model can be expressed

as.

x(n) = (Aejφ + v(n))ejω0n
(22)

where v(n) = bT w and v(n)ej(ω0n+φ) = e(n), so that v(n)
has the same distribution with e(n). Then the estimated autocor-

relation is expressed as

r(m) =
A2

N − m

N−m∑
n=1

(1 +
v(n + m) + v∗(n)

A
(23)

+
v∗(n)v(n + m)

A2
)ejω0m

The error of the estimator from the mth lag correlation is given

by

εm =
1

m
arg{1 +

Xm

N − m
+ j

Ym

N − m
} (24)

where Xm =
∑N−m

n=1 t1(n + m) + t1(n) + t1(n)t1(n + m) +

t2(n)t2(n+m), Ym =
∑N−m

n=1 t2(n+m)−t2(n)−t1(n)t2(n+
m) + t2(n)t1(n + m). tn = v(n)/A2, t(n) = t1(n) + jt2(n).

Since t1(n) and t2(n) are both MA colored process, E(εm) �=
0 when m ≤ q. It can be easily proven that when m > q,

E(Xm) = E(Ym) = 0. Thus

εm ≈ Ym

m(N − m)
for m > q (25)

Now we shall calculate the variance of the estimator in MA col-

ored noise. The covariance function of Ym is required to proceed

with the performance evaluation. Note that t1(n) = bT w/2A2

and denote t1(n + m) = bT wzm/2A2. Through further manip-

ulation, we can obtain

E[YmYl] =
bT

A2

(
N−m∑
n1=1

N−l∑
n2=1

E((w1z
m)(w2zl)T − (w1z

m)w2
T )

)
b

(26)

where E[(w1z
m)(w2zl)T − (w1z

m)w2
T ] is a q × q matrix,

which can be expressed as

E((w1z
m)(w2zl)T − (w1z

m)w2
T ) = D1 − D2 (27)

with

[D1]i,j = δn1+m−i,n2+l−j , i, j = 1, 2, ...q. (28)

[D2]i,j = δn1+m−i,n2−j , i, j = 1, 2, ...q. (29)

Define M =
∑N−m

n1=1

∑N−l
n2=1(D1−D2) and after further deriva-

tion, M can be expressed as

[M]ij =

{
min(N − m, m, N − l, l), i = j

min(N − m + t, m − t, N − l, l), |i − j| = t,
(30)

where t = 1, 2...q − 1. Thus we can get

E[YmYl] =
1

A2
bT Mb (31)

Using the optimal window as given in (13) for unbiased frequency

estimation, we can obtain the corresponding variance as following

E(ε2) =
144

A2N2(N2 − 1)2

N−1∑
m=(N+1)/2

N−1∑
l=(N+1)/2

bT Mb

(32)

where M is the q × q square matrix and defined in (30). Assume

N >> q, M approximately can be expressed as

M = min(N − m, m, l, N − l)E. (33)

where E is a square matrix and all the elements of E are equal to

1, thus

E(ε2) ≈ 144

A2N2(N2 − 1)2

N−1∑
m= N+1

2

N−1∑
l= N+1

2

(34)

min(N − m, N − l)1T bbT 1

=
6σ2|(1 + b1e

jω0 + b2e
j2ω0 .... + bqe

jqω0)|2
A2N(N2 − 1)

=
6ψ(ω0)

SNRN2(N2 − 1)
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This is the asymptotic CRB of frequency estimation in the pres-

ence of colored noise given in [14], where ψ(ω) is the power

spectral density of colored noise as given in (21). (The reason of

being interested in asymptotic CRB lies in the simplicity of such

a formulae compared with the complexity and lack of insights

corresponding to the finite sample exact CRB. Another reason

is its good accuracy for large data samples as shown in [9, 14].)

Thus we have shown that the proposed estimator asymptotically

achieves CRB in MA noise. In Fig.2, we show the estimation of

normalized frequency at f = 0.124, corrupted by colored noise.

The noise is generated by passing AWGN through a MA filter

with system transfer function B(z) = 1 − 1.8z−1 + 1.6z−2 −
2.4z−3. It can be seen that the variance of the estimator agrees

with the asymptotic CRB. The exact CRB is also shown in crossed

line for comparison. It is also noted that the MSE of this fre-

quency estimator in MA colored noise is insensitive to the order of

the MA process if q << N/2, as only lags ( N+1
2

, N+3
2

...N − 1)

are used in the estimation.

4. CONCLUSION

We propose a novel frequency estimator based on the multiple

lags of autocorrelation in conjunction with DFT based phase un-

wrapping. It is shown that this estimator is efficient even for short

length of data samples while maintaining a low SNR threshold.

The performance of the estimator with the optimal window is de-

rived and the relation with MLE is explored. It is shown that this

estimator is statistically similar to MLE but avoids the exhaustive

fine grid search of the MLE. Furthermore, this estimator is used

in frequency estimation in MA colored noise. It is proven that

the variance of the estimator achieves the asymptotic CRB. The

performance of the estimator is verified by simulation.
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Fig. 2. The MSE of the proposed estimator in MA colored noise

compared with the asymptotic CRB and exact CRB, f = 0.124,

N = 64, 128, 256, 512
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[10] P. Händel, A. Eriksson, and T. Wigren, “Performance anal-

ysis of a correlation based single tone frequency estimator,”

Signal Processing, vol. 44, pp. 223–231, 1995.

[11] D. C. Rife and R. R. Boorstyn, “Single-tone parameter es-

timation from discrete-time observations,” IEEE Transac-
tions on Information Theory, vol. 20, no. 5, pp. 591–598,

1974.

[12] S. N. Crozier and K. W. Moreland, “Performance of a simple

delay multiply average technique for frequency estimation,”

in Canadian Conf. Elect. Comput. Eng., 1992. paper WM-

10.3.

[13] M. P. Fitz, “Further results in the fast estimation of a single

frequency,” IEEE Transactions on Communications, vol. 42,

no. 2/3/4, pp. 862–864, 1994.

[14] D. N. Swingler, “Approximate bounds on frequency esti-

mates for short cissoids in colored noise,” IEEE Transac-
tions on Signal Processing, vol. 46, no. 5, pp. 1456–1458,

1998.

IV - 696

➡ ➠


