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ABSTRACT 

We present in this paper a technique for the steganalysis of 

electronic text documents. The proposed method averages 

the similar patterns together in a binary text image to 

estimate the original patterns. The proposed method can 

detect the existence of a secret message hidden by any 

boundary flipping techniques as well as estimate the 

message length and locate the flipped pixels.

1. INTRODUCTION 

The increasing use of digital documents makes digital 

document image processing more and more useful.  Data-

hiding in document images have received much attention 

recently. One of the applications of data-hiding in 

document images is steganography. The purpose of 

steganography is to communicate information secretly so 

that others who inspect the objects being exchanged won’t 

notice the existence of secret information hidden in the 

objects. As opposite to steganography, steganalysis is to 

detect the existence of the secret message in the objects 

and distinguish objects with secret message from objects 

without any secret message.  

      In recent years, some steganalysis techniques have 

been proposed for LSB embedding in color or gray image 

[1, 3, 7].  These techniques make use of the fact that the 

LSB embedding techniques would usually break certain 

kind of conditions such as smoothness to detect the 

existence of the hidden message. However, these 

techniques can not be applied to binary document images 

which do not have the same smoothness condition as color 

or gray images. In [2], Jiang et al. present a steganalysis 

technique for binary text images. In this method, the 

boundaries of characters or symbols in a document are 

modeled by a cubic polynomial and shaped by cubic 

splines.   Then a boundary pixel is estimated from its 

neighbors in a window via cubic polynomials.  The 

coefficients of the polynomials are determined using a 

large training set of unmarked document images. 

However, those coefficients are related with font size and 

font type, they are trained separately for characters and 

symbols of different sizes and fonts.   

      Many techniques have been developed for data hiding 

in binary document images. One type of techniques is to 

manipulate on the line, word or character space by shifting 

the lines, the words or the characters.   However, for these 

techniques, the existence of secret message can be easily 

detected by examining the line, word or character space. 

Moreover, these techniques have relatively small 

embedding capacity hence the utility for steganography is 

limited.  Another type of techniques for binary image data 

hiding is to change the value of individually selected 

pixels, such as the work in [4, 5, 6]. These techniques hide 

information in the image by flipping pixels. Here, flipping 

means change the pixel from white to black or vice versa. 

We call these techniques as pixel-flipping technique. 

Perceptual quality is controlled in these pixel-flipping 

techniques to avoid large visible distortions.   

      In this paper, we proposed a method to detect the 

existence of secret data in clean text images hidden by the 

pixel-flipping techniques.  These clean images are directly 

converted from text files. Although digitization error may 

occur during the conversion, characters/letters/symbols 

from the same origin are identical after the conversion. We 

call these kinds of images as clean text images. However, 

the embedding process which flips some selected 

boundary pixels in the image will introduce noise to the 

image.   

2. EMBEDDING PROCESS 

The pixel-flipping technique would flip some pixels for 

the purpose of hiding information.  In order to avoid large 

visible distortion, most of the pixel-flipping techniques [4, 

5, 6] only flip the boundary pixels. Moreover, these 

techniques normally would not flip two 8-connected 

neighboring pixels simultaneously, which implies in any 

22  square block in the image, no more than one pixel 

would be flipped. After data hiding, the same 

characters/letters/symbols usually no longer match pixel 

by pixel. However, they normally satisfy the following 

conditions when we compare them pixel by pixel: 

    (1)  The number of mismatched pixel pairs would be at 

most 2 in any 22  square window when they are aligned 

together. It is because both of the 22  square blocks 
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which are from the originally same marks may contain one 

flipped pixel. 

    (2)  The number of mismatched pixel pairs is always 

limited compared to the total number of pixel pairs, i.e., 

the percentage of mismatched pixel pairs is usually less 

than a threshold.  

       To detect the existence of secret message, we need to 

check whether the same characters/letters/symbols match 

pixel by pixel. In order to get confident detection result, 

we need to group those originally same symbols together 

while avoid grouping those originally different symbols 

together. A possible solution is to use OCR and computer 

recognition of fonts. However, this would require high 

computation load. Besides, the image may contain user 

created fonts, which possibly confuses the font recognition 

system 

3. PROPOSED METHOD 

The idea of soft pattern matching was proposed to 

compress binary image in JBIG2 [8, 9]. We use the similar 

idea here to detect the existence of a hidden message in 

text images as well as to estimate the message length and 

the locations of flipped pixels.   

3.1. Segmentation 

We first extract all the marks from the whole image. Here, 

we use the term ‘marks’ instead of the previously used 

‘characters/letters/symbols’. Marks [9] refer to letters, 

ligatures, figures and punctuation symbols and other 

symbols. These marks can be easily extracted by any 

standard segmentation technique. In our implementation, 

we segment the image into lines according to the 

horizontal profile and then segment each line into marks 

according to the vertical profile.  

3.2. Grouping of marks 

We sort all the marks according to their locations in the 

images and then carry out the following steps for each 

mark. 

1. Start from the first mark and let it be the current 

mark. 

2. Prescreen all the marks sorted after the current 

mark.  Skip if the size is not equal to that of the 

current mark.    

3. Compare all the potential matched marks with the 

current mark pixel by pixel and calculate the 

number of mismatched pixels. The two marks can 

be aligned perfectly as they have equal size.  If 

the percentage of mismatched pixels is less than a 

predefined threshold T and their matching satisfy 

condition (1) discussed in section 2, the potential 

matched mark is considered as matched to the 

current mark.  In our implementation, T is

experimentally determined as 13% of the pixel 

number enclosed in the bounding box of the 

current mark. All the matched marks would be 

grouped together. The current mark is considered 

matched to itself if no other matched mark found, 

consequently, a group with only one mark 

formed. 

4. Select the first mark of the remaining unmatched 

marks and let it be the new current mark. Repeat 

2, 3 until all the marks have been grouped. 

3.3. Estimation of the original marks 

After the grouping of marks, we get some group of marks. 

Each group has at least one mark.   The marks in one 

group have equal size in both dimensions; we average all 

the marks in each group to get the average mark. The 

average mark is considered as an estimation of the original 

mark. Some groups may have only one mark in it, which 

means the mark in this group can only match to itself. We 

called this kind of mark as unique mark.   

     Suppose a group has N marks iM , where i=1, 2…N.

The pixel value (1 or 0) is represented by ),( yxM i , where 

(x, y) is the displacement of the pixel from the top-left 

corner of the mark.  

Then the average pixel value at (x, y) is 

NyxMRoundyxavg

N

i

i /),(,

1

.                                (1)

where, Round is the rounding operation to an integer.
      We then use the average mark as a reference and 

compare it with all the marks in the group. The aggregate 

of mismatched pixel pairs MMN  is counted for all the 

marks in all the groups. According to [5, 6], the 

embedding algorithms have 50% chance to flip a selected 

pixel for hiding a random bit of message. Thus, the 

message length is estimated by MMN2 .  The above has 

assumed that the embedding process does not change the 

size of the marks. However, some embedding process may 

change it and the message length would be 

underestimated. For example, the embedding method 

proposed by Wu et al in [5] may flip the top-right pixel of 

the left “V” in Figure1 (a) and result in the right “V” in 

Figure 1 (b). In our previous grouping process, these two 

characters would not be grouped into one group because 

their size is not equal.    

                                     (a)            (b) 

 Figure 1. Example of changing the mark size 
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3.4. Merging of similar groups

We study all the average marks obtained in each group by 

equation (1). The average mark for a unique mark is the 

unique mark itself. Since the size of the average marks 

may not be equal, we cannot compare the average marks 

directly. In our implementation, two average marks are 

aligned to achieve the minimum number of mismatched 

pixels. If there exist two average marks which satisfy all of 

the following conditions:  

1. The two average marks have a size which differ 

no more than 2 in either dimension. 

2. The number of mismatched pixels is less than a 

threshold T* and their matching satisfies 

condition (1) in section 2 when the two average 

marks are aligned to achieve the minimum 

number of mismatch pixels. We use T* as 5% of 

the pixel number enclosed in the bounding box of 

the mark. We use T* smaller than T because the 

two average marks have less mismatched pixels if 

they are estimated from originally same marks. 

3. There exists an individual mismatched pixel in 

the first row or last row if their sizes differ in row 

dimension. There exists an individual 

mismatched pixel in the first column or last 

column if their sizes differ in column dimension.  

    Then the two groups of marks are considered originally 

from same marks. We would adjust their size by adding or 

deleting rows or columns and make their size equal.  Here 

we give an example to explain how we adjust it. For 

example, suppose the two “v” in Figure 1 are two average 

marks estimated from the two groups 1G   and 2G . We 

append a column of white pixels on the right side of the 

marks in 2G . Then, the marks in the two groups have equal 

sizes. We merge the two groups to one group. The average 

mark and the number of flipped pixels would be 

recalculated. 

3.5. Detection and Recovery 

The average mark for a group is used as the reference to 

that group. When we compare all the marks in a group 

with the reference for that group, most of mismatched 

pixels are the pixel being flipped. We may further recover 

most of the non-unique marks in an image by replacing the 

marks in each group with the average mark for that group.  

The accuracy of the detection and recovery would be 

discussed later.     

4. ACCURACY  

The accuracy of the estimation of the original mark will 

affect the accuracy of detection and recovery directly. 

From our observation, the accuracy of the estimation 

depends on the embedding algorithm, embedding rate as 

well as the hidden message. We have studied several 

approaches [5, 6]. We choose these two approaches as 

they are representative of pixel-flipping techniques. In our 

work, we assume the hidden message is randomly 

generated.   

       The embedding algorithm reported by Mei et al in [6] 

hides information using a set of dual five-pixel-long 

boundary pattern. According to the algorithm, it would 

choose the same locations in as the candidates for flipping 

in same contour, i.e., same characters or marks. It won’t 

change the size of the mark and the process in section 3.4 

is not necessary here. Wu et al in [5] used a shuffling key 

to provide random flipping. This method may affect the 

size of the marks, thus merging process discussed in 

section 3.4 is necessary. The accuracy of the estimation of 

pixel value of original marks is discussed below. 

      For a group of N matched marks, suppose n pixels of 

the total N pixels at a location (x, y) are used to hide 

information. Without losing the generality, suppose the N

pixels are ),( yxM i , for i=1, 2…n. Then the probability to 

get the correct estimation at (x, y) can be computed by:  

 ),( yxp  =
else,)

2

1
()(

1/2,/if,1
0

0

n

n

k
k

n

Nn

,                       (2)

where,
0is vaulepixeloriginalif2/)1(

1is valuepixeloriginalif2/

0 N

N
n

 and  is the floor function.  

Here we assume the embedding algorithm use odd/even or 

equivalent features to hide every bit.  The number n is 

related with the embedding scheme as well as the 

embedding rate. For Mei’s scheme, n/N is close or equal to 

the embedding rate if the pixel at (x, y) is suitable for 

flipping. For Wu’s scheme, n/N is close or equal to the 

ratio of message length over the total number of pixels 

suitable for flipping, normally, it is smaller than 0.5.  

5. EXPERIMENTS 

We tested 60 images with different computer generated 

fonts. The size of these images varies from 500x500 pixels 

to A4 size.  By using the soft pattern matching, marks with 

different fonts can be grouped into different groups as the 

sizes of the marks are not equal or they don’t satisfy 

condition (1) and (2). Although the same marks always 

satisfy the two conditions discussed previously, there is no 

guarantee that any two marks which satisfy the two 

conditions must be originally identical. We did observe 

two such marks in our testing.  For example, the comma (,) 

and the quotation mark (’) differ by 1 pixel.  We can 

exclude these marks as their size is smaller than alphabet.  

We use the scheme in [5] and [6] to embed random bits in 

the images at different embedding rate R and then use the 
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proposed method to estimate the embedding rate and get 

the estimated embedding rate *R . The estimation error of 

the embedding rate is defined as RRR * . The 

estimation errors at different embedding rate for the two 

embedding approaches are shown in Figure 3 and Figure 4 

respectively. The solid line represents the mean error; the 

dotted line and the dash-dotted line represent the upper 

bound errors and the lower bound errors. The estimation 

error increases as embedding rate approach 1. The 

estimated message length is usually underestimated but we 

know there’s a large amount of data embedded. One 

reason we get underestimated result is the existence of 

unique mark especially figures, equations. The other 

reason is the estimation error from equation (1). From 

Figure 3 and 4, we can see that the proposed method 

performs better to estimate the message length hidden by 

Wu’s scheme than by Mei’s scheme. This is because the 

estimation by equation (1) gives better result on image 

embedded by Wu’s scheme than on image embedded by 

Mei’s scheme.  We also study the accuracy of locating the 

flipped pixels and original image. The accuracy is close to 

the estimation of message length.  
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Figure 3. Estimation errors of 60 Images for Wu’s scheme  
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Figure 4. Estimation errors of 60 Images for Mei’s scheme 

6. DISCUSSIONS 

Our proposed method can detect the existence of the 

hidden message as well as the message length. It can 

estimate the locations of flipped and the original pixel 

value at these locations. It does not require the knowledge 

of the details of the embedding algorithm. Hence, it is a 

general method and it can estimate the flipping rate for 

most of the boundary pixel-flipping techniques.  The 

limitation of the method is that it only works for clean text 

image free from scanning errors.  It cannot detect some 

message. For example, we hide several bits in one “s” and 

make all other “s” identical with the “s” where we hide the 

information.  However, the information can be hidden 

would be quite lower compared with the method in [4, 5, 

6].  Future work would be focused on detecting the 

existence of message in a noisy image such as a scanned 

image. 
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