
 STEGANALYSIS OF BINARY TEXT IMAGES

Jun Cheng, Alex C. Kot, Jun Liu, Hong Cao

School of Electrical and Electronic Engineering

Nanyang Technological University, Singapore 639798

cjun@pmail.ntu.edu.sg

ABSTRACT

We present in this paper a technique for the steganalysis of

electronic text documents. The proposed method averages

the similar patterns together in a binary text image to

estimate the original patterns. The proposed method can

detect the existence of a secret message hidden by any

boundary flipping techniques as well as estimate the

message length and locate the flipped pixels.

1. INTRODUCTION

The increasing use of digital documents makes digital

document image processing more and more useful. Data-

hiding in document images have received much attention

recently. One of the applications of data-hiding in

document images is steganography. The purpose of

steganography is to communicate information secretly so

that others who inspect the objects being exchanged won’t

notice the existence of secret information hidden in the

objects. As opposite to steganography, steganalysis is to

detect the existence of the secret message in the objects

and distinguish objects with secret message from objects

without any secret message.

 In recent years, some steganalysis techniques have

been proposed for LSB embedding in color or gray image

[1, 3, 7]. These techniques make use of the fact that the

LSB embedding techniques would usually break certain

kind of conditions such as smoothness to detect the

existence of the hidden message. However, these

techniques can not be applied to binary document images

which do not have the same smoothness condition as color

or gray images. In [2], Jiang et al. present a steganalysis

technique for binary text images. In this method, the

boundaries of characters or symbols in a document are

modeled by a cubic polynomial and shaped by cubic

splines. Then a boundary pixel is estimated from its

neighbors in a window via cubic polynomials. The

coefficients of the polynomials are determined using a

large training set of unmarked document images.

However, those coefficients are related with font size and

font type, they are trained separately for characters and

symbols of different sizes and fonts.

 Many techniques have been developed for data hiding

in binary document images. One type of techniques is to

manipulate on the line, word or character space by shifting

the lines, the words or the characters. However, for these

techniques, the existence of secret message can be easily

detected by examining the line, word or character space.

Moreover, these techniques have relatively small

embedding capacity hence the utility for steganography is

limited. Another type of techniques for binary image data

hiding is to change the value of individually selected

pixels, such as the work in [4, 5, 6]. These techniques hide

information in the image by flipping pixels. Here, flipping

means change the pixel from white to black or vice versa.

We call these techniques as pixel-flipping technique.

Perceptual quality is controlled in these pixel-flipping

techniques to avoid large visible distortions.

 In this paper, we proposed a method to detect the

existence of secret data in clean text images hidden by the

pixel-flipping techniques. These clean images are directly

converted from text files. Although digitization error may

occur during the conversion, characters/letters/symbols

from the same origin are identical after the conversion. We

call these kinds of images as clean text images. However,

the embedding process which flips some selected

boundary pixels in the image will introduce noise to the

image.

2. EMBEDDING PROCESS

The pixel-flipping technique would flip some pixels for

the purpose of hiding information. In order to avoid large

visible distortion, most of the pixel-flipping techniques [4,

5, 6] only flip the boundary pixels. Moreover, these

techniques normally would not flip two 8-connected

neighboring pixels simultaneously, which implies in any

22 square block in the image, no more than one pixel

would be flipped. After data hiding, the same

characters/letters/symbols usually no longer match pixel

by pixel. However, they normally satisfy the following

conditions when we compare them pixel by pixel:

 (1) The number of mismatched pixel pairs would be at

most 2 in any 22 square window when they are aligned

together. It is because both of the 22 square blocks

IV - 6890-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

which are from the originally same marks may contain one

flipped pixel.

 (2) The number of mismatched pixel pairs is always

limited compared to the total number of pixel pairs, i.e.,

the percentage of mismatched pixel pairs is usually less

than a threshold.

 To detect the existence of secret message, we need to

check whether the same characters/letters/symbols match

pixel by pixel. In order to get confident detection result,

we need to group those originally same symbols together

while avoid grouping those originally different symbols

together. A possible solution is to use OCR and computer

recognition of fonts. However, this would require high

computation load. Besides, the image may contain user

created fonts, which possibly confuses the font recognition

system

3. PROPOSED METHOD

The idea of soft pattern matching was proposed to

compress binary image in JBIG2 [8, 9]. We use the similar

idea here to detect the existence of a hidden message in

text images as well as to estimate the message length and

the locations of flipped pixels.

3.1. Segmentation

We first extract all the marks from the whole image. Here,

we use the term ‘marks’ instead of the previously used

‘characters/letters/symbols’. Marks [9] refer to letters,

ligatures, figures and punctuation symbols and other

symbols. These marks can be easily extracted by any

standard segmentation technique. In our implementation,

we segment the image into lines according to the

horizontal profile and then segment each line into marks

according to the vertical profile.

3.2. Grouping of marks

We sort all the marks according to their locations in the

images and then carry out the following steps for each

mark.

1. Start from the first mark and let it be the current

mark.

2. Prescreen all the marks sorted after the current

mark. Skip if the size is not equal to that of the

current mark.

3. Compare all the potential matched marks with the

current mark pixel by pixel and calculate the

number of mismatched pixels. The two marks can

be aligned perfectly as they have equal size. If

the percentage of mismatched pixels is less than a

predefined threshold T and their matching satisfy

condition (1) discussed in section 2, the potential

matched mark is considered as matched to the

current mark. In our implementation, T is

experimentally determined as 13% of the pixel

number enclosed in the bounding box of the

current mark. All the matched marks would be

grouped together. The current mark is considered

matched to itself if no other matched mark found,

consequently, a group with only one mark

formed.

4. Select the first mark of the remaining unmatched

marks and let it be the new current mark. Repeat

2, 3 until all the marks have been grouped.

3.3. Estimation of the original marks

After the grouping of marks, we get some group of marks.

Each group has at least one mark. The marks in one

group have equal size in both dimensions; we average all

the marks in each group to get the average mark. The

average mark is considered as an estimation of the original

mark. Some groups may have only one mark in it, which

means the mark in this group can only match to itself. We

called this kind of mark as unique mark.

 Suppose a group has N marks iM , where i=1, 2…N.

The pixel value (1 or 0) is represented by),(yxM i , where

(x, y) is the displacement of the pixel from the top-left

corner of the mark.

Then the average pixel value at (x, y) is

NyxMRoundyxavg

N

i

i /),(,

1

. (1)

where, Round is the rounding operation to an integer.
 We then use the average mark as a reference and

compare it with all the marks in the group. The aggregate

of mismatched pixel pairs MMN is counted for all the

marks in all the groups. According to [5, 6], the

embedding algorithms have 50% chance to flip a selected

pixel for hiding a random bit of message. Thus, the

message length is estimated by MMN2 . The above has

assumed that the embedding process does not change the

size of the marks. However, some embedding process may

change it and the message length would be

underestimated. For example, the embedding method

proposed by Wu et al in [5] may flip the top-right pixel of

the left “V” in Figure1 (a) and result in the right “V” in

Figure 1 (b). In our previous grouping process, these two

characters would not be grouped into one group because

their size is not equal.

 (a) (b)

 Figure 1. Example of changing the mark size

IV - 690

➡ ➡

3.4. Merging of similar groups

We study all the average marks obtained in each group by

equation (1). The average mark for a unique mark is the

unique mark itself. Since the size of the average marks

may not be equal, we cannot compare the average marks

directly. In our implementation, two average marks are

aligned to achieve the minimum number of mismatched

pixels. If there exist two average marks which satisfy all of

the following conditions:

1. The two average marks have a size which differ

no more than 2 in either dimension.

2. The number of mismatched pixels is less than a

threshold T* and their matching satisfies

condition (1) in section 2 when the two average

marks are aligned to achieve the minimum

number of mismatch pixels. We use T* as 5% of

the pixel number enclosed in the bounding box of

the mark. We use T* smaller than T because the

two average marks have less mismatched pixels if

they are estimated from originally same marks.

3. There exists an individual mismatched pixel in

the first row or last row if their sizes differ in row

dimension. There exists an individual

mismatched pixel in the first column or last

column if their sizes differ in column dimension.

 Then the two groups of marks are considered originally

from same marks. We would adjust their size by adding or

deleting rows or columns and make their size equal. Here

we give an example to explain how we adjust it. For

example, suppose the two “v” in Figure 1 are two average

marks estimated from the two groups 1G and 2G . We

append a column of white pixels on the right side of the

marks in 2G . Then, the marks in the two groups have equal

sizes. We merge the two groups to one group. The average

mark and the number of flipped pixels would be

recalculated.

3.5. Detection and Recovery

The average mark for a group is used as the reference to

that group. When we compare all the marks in a group

with the reference for that group, most of mismatched

pixels are the pixel being flipped. We may further recover

most of the non-unique marks in an image by replacing the

marks in each group with the average mark for that group.

The accuracy of the detection and recovery would be

discussed later.

4. ACCURACY

The accuracy of the estimation of the original mark will

affect the accuracy of detection and recovery directly.

From our observation, the accuracy of the estimation

depends on the embedding algorithm, embedding rate as

well as the hidden message. We have studied several

approaches [5, 6]. We choose these two approaches as

they are representative of pixel-flipping techniques. In our

work, we assume the hidden message is randomly

generated.

 The embedding algorithm reported by Mei et al in [6]

hides information using a set of dual five-pixel-long

boundary pattern. According to the algorithm, it would

choose the same locations in as the candidates for flipping

in same contour, i.e., same characters or marks. It won’t

change the size of the mark and the process in section 3.4

is not necessary here. Wu et al in [5] used a shuffling key

to provide random flipping. This method may affect the

size of the marks, thus merging process discussed in

section 3.4 is necessary. The accuracy of the estimation of

pixel value of original marks is discussed below.

 For a group of N matched marks, suppose n pixels of

the total N pixels at a location (x, y) are used to hide

information. Without losing the generality, suppose the N

pixels are),(yxM i , for i=1, 2…n. Then the probability to

get the correct estimation at (x, y) can be computed by:

),(yxp =
else,)

2

1
()(

1/2,/if,1
0

0

n

n

k
k

n

Nn

, (2)

where,
0is vaulepixeloriginalif2/)1(

1is valuepixeloriginalif2/

0 N

N
n

 and is the floor function.

Here we assume the embedding algorithm use odd/even or

equivalent features to hide every bit. The number n is

related with the embedding scheme as well as the

embedding rate. For Mei’s scheme, n/N is close or equal to

the embedding rate if the pixel at (x, y) is suitable for

flipping. For Wu’s scheme, n/N is close or equal to the

ratio of message length over the total number of pixels

suitable for flipping, normally, it is smaller than 0.5.

5. EXPERIMENTS

We tested 60 images with different computer generated

fonts. The size of these images varies from 500x500 pixels

to A4 size. By using the soft pattern matching, marks with

different fonts can be grouped into different groups as the

sizes of the marks are not equal or they don’t satisfy

condition (1) and (2). Although the same marks always

satisfy the two conditions discussed previously, there is no

guarantee that any two marks which satisfy the two

conditions must be originally identical. We did observe

two such marks in our testing. For example, the comma (,)

and the quotation mark (’) differ by 1 pixel. We can

exclude these marks as their size is smaller than alphabet.

We use the scheme in [5] and [6] to embed random bits in

the images at different embedding rate R and then use the

IV - 691

➡ ➡

proposed method to estimate the embedding rate and get

the estimated embedding rate *R . The estimation error of

the embedding rate is defined as RRR * . The

estimation errors at different embedding rate for the two

embedding approaches are shown in Figure 3 and Figure 4

respectively. The solid line represents the mean error; the

dotted line and the dash-dotted line represent the upper

bound errors and the lower bound errors. The estimation

error increases as embedding rate approach 1. The

estimated message length is usually underestimated but we

know there’s a large amount of data embedded. One

reason we get underestimated result is the existence of

unique mark especially figures, equations. The other

reason is the estimation error from equation (1). From

Figure 3 and 4, we can see that the proposed method

performs better to estimate the message length hidden by

Wu’s scheme than by Mei’s scheme. This is because the

estimation by equation (1) gives better result on image

embedded by Wu’s scheme than on image embedded by

Mei’s scheme. We also study the accuracy of locating the

flipped pixels and original image. The accuracy is close to

the estimation of message length.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

Embedding Rate

E
s
ti
m

a
ti
o
n
 e

rr
o
r(

in
 p

e
rc

e
n
ta

g
e
 o

f
m

a
x
im

u
m

 m
e
s
s
a
g
e
 l
e
n
g
th

)

Upper bound error

Mean error

Lower bound error

Figure 3. Estimation errors of 60 Images for Wu’s scheme

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Embedding Rate

E
s
ti
m

a
ti
o
n
 e

rr
o
r(

in
 p

e
rc

e
n
ta

g
e
 o

f
m

a
x
im

u
m

 m
e
s
s
a
g
e
 l
e
n
g
th

)

Upper bound error

Mean error

Lower bound error

Figure 4. Estimation errors of 60 Images for Mei’s scheme

6. DISCUSSIONS

Our proposed method can detect the existence of the

hidden message as well as the message length. It can

estimate the locations of flipped and the original pixel

value at these locations. It does not require the knowledge

of the details of the embedding algorithm. Hence, it is a

general method and it can estimate the flipping rate for

most of the boundary pixel-flipping techniques. The

limitation of the method is that it only works for clean text

image free from scanning errors. It cannot detect some

message. For example, we hide several bits in one “s” and

make all other “s” identical with the “s” where we hide the

information. However, the information can be hidden

would be quite lower compared with the method in [4, 5,

6]. Future work would be focused on detecting the

existence of message in a noisy image such as a scanned

image.

7. REFERENCE

[1] J. Fridrich, M.Goljan, and R.Du, “Reliable detection of

lsb steganography in color and grayscale images”, in Porc.

Of the ACM Workshiop on Multimedia Security, Ottawa,

CA, May 2001, pp.27-30.

[2].M. Jiang, X.Wu, E.K.Wong, and N. Memon,

“Steganalysis of boundary-based steganography using

autoregressive model of digital boundaries”, in IEEE

ICME 2004, June 2004.

 [3]. J. Fridrich, M. Goljan, D. Hogea, and D. Soukal,

“Quantitative steganalysis of digital images: Estimating

the secret message length,” ACM Multimedia Systems

Journal, vol. 9, no.3, pp. 288-302, 2003.

[4] Haiping Lu, A. C. Kot., Jun Cheng; “Secure data

hiding in binary document images for authentication”,

ISCAS 2003. vol. 3. May 2003, pp. III-806 - III-809

[5] M. Wu, E. Tang, and B. Liu, “Data hiding in digital

binary image,” in IEEE ICME 2000. New York City, NY,

USA, July 2000.

[6] Q. Mei, E.K. Wong, and N.Memon, “Data hiding in

binary text documents,” SPIE Proc Security and

Watermarking of Multimedia Contents III, Jan. 2001.

[7] Sorina Dumitrescu and Xiaolin Wu, “Steganalysis of

LSB Embedding in Multimedia Signals”, in IEEE ICME

2002. August 2002 pp:581 – 584. vol.1

[8] Paul G. Howard, “Text image compression using soft

pattern matching,” The Computer Journal, vol. 40, no. 2-

3, 1997.

[9] P. Howard and F.Kossentini et al., “The emerging

JBIG 2 standard,” IEEE Trans on Circuit and Systems for

Video Technilogy, vol. 8, pp. 838-848, 1998.

[10] J. Fridrich and M. Goljan, “Practical Steganalysis-

State of the Art,” Proc. SPIE Photonics Imaging 2002,

Security and Watermarking of Multimedia Contents, vol.

4675, SPIE Press, 2002, pp.1-13.

IV - 692

➡ ➠

