<

KALMAN FILTERING FOR TRIPLET MARKOV CHAINS :
APPLICATIONS AND EXTENSIONS

B. Ait El Fquih and F. Desbouvries

GET/INT/dépt. CITI and CNRS UMR 5157
9 rue Charles Fourier, 91011 Evry, France

boujemaa.ait_elfquih@int-evry. fr,

ABSTRACT

An important problem in signal processing consists in es-
timating an unobservable process x = {X;, }new from an
observed process y = {¥n }nen. In Linear Gaussian Hid-
den Markov Chains (LGHMC), the classical recursive solu-
tion is given by the Kalman filter. In this paper, we consider
Linear Gaussian Triplet Markov Chains (LGTMC) by as-
suming that the triplet (x,r,y) (in which r = {r, },en is
some additional process) is Markovian and Gaussian. We
first show that this model encompasses and generalizes the
classical linear stochastic dynamical models with autore-
gressive process and / or measurement noise. We next pro-
pose (for the regular and for the perfect-measurement cases)
restoration Kalman-like algorithms for general LGTMC.

1. INTRODUCTION

Let us consider the classical linear dynamical stochastic sys-

tem :
Xn+1 -
Yn =

in which x,, € IR"™ is the state, y,, € IR" is the obser-
vation, and F,,, G,,, H,, and J,, are known deterministic
matrices. The input noise u,, € IR™ and the measurement
noise v,, € IR are assumed to be independent, jointly
independent and independent of x.

Let x0., = {x;}1 and yo., = {y:i}i,. Let also
p(Xn), P(X0:n) and p(x,|yo:n), say, denote the probabil-
ity density function (pdf) (w.r.t. Lebesgue measure) of x,,,
the pdf of x¢.,,, and the pdf of x,,, conditionally on yq.y,
respectively; the other pdf are defined similarly. A funda-
mental problem associated with (1) (the so-called filtering
problem) is the recursive computation of the posterior pdf
p(Xn|yon). If furthermore xo and n,, = [uZ,vI]T are
Gaussian variables, then p(x,|yo.,) is also Gaussian and
is thus described by its mean and covariance matrix. Propa-
gating p(X,, |yo.» ) amounts to propagating these parameters,
and the algorithm we get is the celebrated Kalman filter!.

FTL X’IL + GTL uTL

H,x, +J,v, M

!'As is well known, one can equivalently drop the Gaussian assumption
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Since this pionnering work, the Kalman filter has been
generalized in many directions. To name just a few exam-
ples, square-root type algorithms have been proposed; the
independence assumptions on {u,} and {v,} have been
dropped; and the extension to non-linear and / or non- Gaus-
sian systems has been considered.

Yet another direction in which it is possible to extend
the Kalman filter consists in releasing some conditional in-
dependence assumptions among x and y. Let us come back
to model (1). We see that x is a Markov Chain (MC), and
since it is known only through the observed process y, (1)
is an HMC. Now, if (1) holds then both {(x,, ¥n)}nen
and {(Xp+1, Yn) }new are (vector) MC. Conversely, start-
ing only from one of these assumptions (i.e. assuming a so-
called "Pairwise” MC (PMC) model) is a more general point
of view, which nevertheless enables efficient restoration al-
gorithms; extending the Kalman filter to a model where
{(Xn, ¥yn)} (esp. {(Xn+1, yn)}) is Markovian has been
considered in [1] (resp. [2]).

Let now r = {r, }nen be some additional process, and
let us set t,, = [xZ,rX,yI ,]T. A Triplet MC (TMC) is
a model in which we only assume that {t,,} is a (vector)
MC. This model generalizes the PMC model, and yet en-
ables (in the LG regular case) the development of an effi-
cient Kalman-like restoration algorithm [3].

Let us turn to the contents of this paper. In section 2,
we show that the classical linear models with autoregressive
process and/or measurement noise are, among other mod-
els, some important particular cases (mostly with perfect,
i.e. with unnoisy measurements) of the general linear TMC
model; so the triplet model, which initially was designed as
a Markovian extension of (1), happens also to encompass
(and generalize) the early classical generalizations (as re-
gards processes {u, } and {v,}) of model (1). In section
3, we propose a restoration algorithm for general LGTMC
with perfect measurements. Finally, some applications are
considered in section 4.

and derive the Kalman filter as the recursive solution of a linear minimum
mean-square error estimation procedure.

ICASSP 2005



2. LINEAR TMC : DEFINITION & APPLICATIONS

2.1. The linear TMC model

Letx = {x, }nen be the hidden state process, y = {yn }nenN
the observed process and r = {r,, } ,e an additional (pos-
sibly artificial) process. The process t = {t,, }nemw, With
t, = [x1,rl yT |17 is alinear TMC [3] if

Xn+1 Fp It FpYl | Xa Wy
Cpy1 | = | Fr* Fpt Fry r, + | wrh |,
v | LA me my v [
trhii Fn Wo
)
in which w = {w,, } e iS a zero-mean process which is
independent and independent of to = [xZ,rl,07]7. We

assume that matrix F,, is known.

2.2. Some particular cases

Let us first see that some classical and widely used mod-
els are particular linear TMC; they differ from one another
by the matrices J,, (some submatrices of which are equal
to zero); by the physical meaning of the additional process
r = {r, }nen; and/or by independence assumptions among
subvectors of w,,.

2.2.1. Linear HMC

The standard state-space model is a very particular linear
TMC, since (2) reduces to (1) if we assume that matrices
FRr, FoY, Fox, FpY, FYF and FYY are all equal to
zero, and that {w*}, {wr} and {wY} are independent.

2.2.2. Autoregressive process noise

The case where in (1) {u, } becomes an MC has been intro-
duced in [4] (see also [5]); this model can be written as

xn+1 Fn Gn Onx X1y Xn Onx x 1
Up41| = Onuxnx Az Onuxny u, [+ gq‘:: . (3)
Yn Hn Onyxnu Onyxny Yn—1 Jnvn

2.2.3. Autoregressive measurement noise

The case where in (1) {v,} becomes an MC has been first
addressed in [6], then generalized in [7] (see also [4] and
[5]). This model is widely used in a lot of applications, and
in particular in speech enhancement and coding, see e.g.
[8]; it can be rewritten as

Xn+1 Fn Onxxnv Onxxny Xn Gnun
Vp41| = On‘,xnx Ax On‘,xny Vo |t :{ .4
Yn Hn Jn Ony Xn Yn-1 Ony X1

2.2.4. Autoregressive model noise

Sorenson [9] introduced a model which extends the two pre-
vious ones by assuming that {u,, } and {v,, } are simultane-
ously Markovian (but still independent); see also [10] for a
full algorithmic treatment and applications to radar tracking.
This model can be further generalized by assuming that

Unpr| _ | AL ARV u, &n
|: Vn+1:| - |: Ax,u AX v + g:{ 9 (5)
—_——— — — ——r

nn+1 An 571

where § = {&,}, oy 1S zero mean, independent and inde-
pendent of ng. The associated triplet model is

Xn+1 Fn Cn Onx XNy Xn Onxxl
Np41|= Onnxnx én Onnxny ny, + fn 3 (6)
Yn H, Ju Op xng||l¥Yn—1 01y x1

with G,, = [G,,,0,, xn,] and J,, = [0ny xnysJnls it re-
duces to the model introduced by Sorenson if A%u’v) =
O, AY™ = 0, and {€2} and {£} are inde-

pendent.

2.2.5. Linear PMC model and its extensions

The PMC model introduced in [2] reads

Xnt1| _[ Fp Fpl[xn n Gl G20 u,

Yn H}z H721 Yn—1 ngl G7212 Vi ’
——— — —— ————A——
Zn+l F, Gp Ny

(N
where n = {n,, },c is a zero-mean process which is inde-
pendent and independent of xy. This model can be seen as

a linear TMC. If we now assume that n is Markovian, then
the model becomes

1

Xp41 F,}l én F% Xn Onx x1
N1 = Onn X Ty An Onn XNy n, |+ gn 3 (8)
Yn H. G H2 |[¥no-1 |[Onyx

with G, = [G1,G!?] and G° = [G2',G??], which,
again, is a particular linear TMC.

3. LGTMC : RESTORATION ALGORITHMS

The aim of this section is to derive an algorithm for com-

puting recursively p(X,|yo.) in the case of an LGTMC.
Let us first gather the unobserved variables x,, and r,,

into a commun vector x = [x.,r’]”. Then (2) can be

n» n
rewritten more compactly as

] [FOX BV x wx
{yn }{fy HY”%—J*[w% } ®
~—— ——

tnt1 Fn Wo
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Let
x*,x* x*y
Bwonwh)=| Gy Gy |Gnm=Cubun - (10)
n n

Model (2) is indeed a partially observed vector MC, in
which we observe some components {y,, }, and we want to
restore (part of) the remaining ones {x }; so our algorithm
computes p(X}|yo.n), and next p(x,|yo.») is obtained by
marginalization. Let us remark that p(x |yo.,) can be com-
puted efficiently for, even though TMC are not necessarily
HMC (since x is not necessarily an MC), the conditional
law of x* given y is Markovian; this key computational
property, in turn, enables the derivation of fast algorithms.

3.1. Regular LGTMC

Let us first address the case where QY is positive definite.
In this case a Kalman-like filtering algorithm has been pro-
posed in [3]; it is recalled here for convenience of the reader.
Let p(xg) ~ N (x5, P§) and p(wy,) ~ N (0, Q,,). Then
p(x},|yo:n) and p(x7, 1 |yo.n) are Gaussian. Let

p(x;k7.|y0:n) ~ N(A;\n’P:M)? (11)
p(x;kL+1|y0'n) ~ N( n+1\n’P;kL+1|n)' (12)

Then X X1 nt1 and Pn+1|n+1 can be computed from x*
and P* via the following equations :

n+1|n

n+1jn
Xogipn = P = QU V(@) TIER,
+ Y@y
+ B = Q@Y T FYY v, (13)
il = Q8T — QR Y(QYY) Ty
b - Q@) AT K Py x
[F - erY @) R, a4
K:L+1\n+1 = PZ+1\n(fgf1*)T
X QU+ FE Pl (BT a9)
Xoiint1 = X + Ko
X [Ynpr— PN Ry — F2ynl, (16)
:L+1\n+1 = :L+1‘7L—K:L+1|TI,+1[QZfl+

x* * T
‘Fn-‘rl Pn—&—l\n(]:g—i-l )T] ( n+1|n+1) : (17)

3.2. Perfect measurement LGTMC

As we have seen in section 2.2, some useful models are
particular linear TMC with perfect (i.e., unnoisy) measure-
ments. In this section we thus address the restoration prob-
lem in case w3 = 0., x1. Adapting a classical method used
in LGHMC, we shall first perform a state-space transforma-
tion in order to reduce the dimension of x};; we will then
obtain a new stochastic linear dynamical system, and will
propose an estimation algorithm for that system.

3.2.1. State-space transformation

Let us first consider the following alternate partition of x,

x |:(Xn)nx><1 ] _ |:(Xn)(nx+nr—ny)><1 . (18)

no (Tn)nex1 (Fn)nyxl 7
Let us partition Y% as
FLX = (P ngsne  (FLngsny] 5 (19)

and let us assume that FY°F is invertible. In this case the
following transformation

In;—ny O(n;‘(—ny)xny Xn _ Xn
|: f%’i -7‘?{’? fn N Yn — f?l"YYn—1 (20)
AN~

«
Tn Xn

is invertible, and thus defines the state-space transformation:
Tn+1 0 X’):L-‘rl _ Tn+1 0 K T 1 0 T 0
0 Iny Yn N 0 I 0 Iny 0 Iny yn 1
~— ——
tni1 tn

T, 0][wX
Toelsl) e

Y.

The first nyx« equations read :

Xnt1 A el | G* -
= |vx 0 Y1+ W, (22
{ yn+1} lfry;x f”“ yn}r[gfl] Yoot W, (22

n

3

in which

B . 0,
vx 3yl = TuriFy ™ Tnﬂ i }(23)
EZ fiq i 0 }—Zﬂ
gf X"y _ ?xy Yy,
& = T, 1 F> it y_fnﬂ FYY, (24)
Wn = Thw® . (25)

3.2.2. Restoration algorithm

Let us finally address the restoration of X,, from {yy., } in
system (22) (the subsequent restoration of x,, is immediate
if n, > ny, since in this case x,, is a subvector of X,,; it can
also be considered if n, < ny, but this point is omitted here
due to lack of space). From (25) and (10), we get

E(WTLWE;) = “+1 Qx x Tn+16nﬂn (26)
g g ~
@y,f @y,y ] nm = Qn 5n,m .

Let p(Xg) ~ N(ig,?o) and p(wW,) ~ N(0,Q,). Then
P(Xn|yo:n) and p(X,+1|yo.n) are also Gaussian. Let

p(in+1|y0:n) ~ N(§n+1|n7?n+1\n)~ (28)
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Then %nﬂ‘nﬂ and P, 1,,+1 can be calculated from §n+1‘n
and P, |n Via the following equations? (the proof is omit-
ted for want of space) :

Rt = Fo Rnpn + o Yo + Goayn1, (29)
Poiin = F P E)T+ 007, (30)
Foiiln = Fo Ko + Fo " yn + Gayn-1, 31)
Kot = e Pn‘n(fy’ 7T+, (32)
Lostpnss = Fo P (ET + 007, (33)

)

Xn+1\n+1 = in+1\n—"_I<n+1|7L+1Ln+1|n+1(yn+l_yn+(1$741!')

|
\
|

— —1 =T
n+1lln+l1 — n+lln — Kn+1|n+1Ln+1|n+1Kn+1\n+€35)

4. APPLICATIONS

4.1. Speech Enhancement and Coding

As we have seen in section 2.2, the linear TMC model en-
compasses some classical models. It happens that the algo-
rithm of section 3.2 also includes some classical algorithms
as particular cases.

Let us for instance consider the case of a classical model
with autoregressive measurement noise (we consider this
example because of its wide applicability, in particular in
speech enhancement and coding, see e.g. [8]). If the linear
TMC reduces to (4), then G, and G, vanish, so in (29) to
(35) the dependency on y,,_1 vanishes, and these equations
reduce to equations of [8]. More precisely, equations (30),
(32) and (34) reduce respectively to [8, eq. 51 p. 1736], [8,
eq. 57 p. 1737] and [8, eq. 56 p. 1736]; while (29) (resp.
(35)) reduces to an equation which can be obtained as part
of [8, eq. 54 p. 1736] (resp. [8, eq. 52 p. 1736]).

4.2. A numerical example

Let us finally provide a numerical example of a general
LGTMC with perfect measurement. Let us set

12 .10 .11 125 015 0
F,= |11 10 12|, 9,=1|.015 125 0],
10 .11 .12 0 0 0
and let p(x}) ~ N([0.5,0.5]7,2.5 I). The first figure

shows the true and filtered states, and the second one the
theoretical and empirical mean square errors; both figures
are averaged over 100 realizations.

Zinverses in (34) and (35) should be replaced by a generalized inverse

if fn+1|n+1 is not invertible.

— True 12 — Theoretical
0.8 — — Filtered b — — Empirical

0
0 10 20 30 40 50 0 10 20 30 40 50
Time Time

S. CONCLUSION

The linear TMC model encompasses and generalizes some
important extensions (colored process and/or measurement
noise) of the standard state-space model. A restoration al-
gorithm for general LGTMC with unnoisy measurements
has been proposed; this algorithm is itself a generalization
of some classical Kalman-like algorithms.
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