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ABSTRACT

In this paper, we present a kernel-based nonlinear version of the
adaptive subspace detector (ASD) that detects signals of interest
in a high dimensional (possibly infinite) feature space associated
with a certain nonlinear mapping. In order to address the high
dimensionality of the feature space, ASD is first implicitly formu-
lated in the feature space which is then converted into an expres-
sion in terms of kernel functions via the kernel trick of the Mer-
cer kernels. The proposed kernel-based ASD (KASD) exploits the
nonlinear correlations between the spectral bands that is ignored
by the conventional ASD. Experimental results based on the given
hyperspectral image show that the proposed KASD outperforms
the conventional ASD.

1. INTRODUCTION

Detecting signals of interest, particularly with wide signal vari-
ability, in noisy environments has long been a challenging issue in
various fields of signal processing. Among a number of previously
developed detectors, the well-known matched subspace detectors
(MSDs) [1] have been widely used to detect a desired signal (tar-
get) represented by a subspace buried within a background noise
whose covariance structure is assumed to be known. However, in
reality, the noise covariance is normally unknown and has to be
estimated based on training samples. In [2], adaptive versions of
MSDs, referred to as adaptive subspace detectors (ASDs), have
been introduced whose detector statistic uses the maximum likeli-
hood estimate (MLE) of the noise covariance.

Matched signal detectors, such as spectral matched filter and
matched subspace detectors (whether adaptive or nonadaptive),
only exploit second order correlations, thus completely ignoring
nonlinear (higher order) spectral inter-band correlations that could
be crucial to discriminate between target and background. In this
paper, we aim to develop a nonlinear version of ASD which ef-
fectively exploits the higher order spectral inter-band correlations
in a high (possibly infinite) dimensional feature space associated
with a certain nonlinear mapping via kernel-based learning meth-
ods [3]. A nonlinear mapping of input data into the high dimen-
sional feature space often increases data separability and reduces
the complexity of the corresponding data structure [4]. Nonlinear
versions of a number of signal processing techniques such as prin-
cipal component analysis (PCA) [5], clustering [4], matched sub-
space detectors [6], and anomaly detectors [7] have already been
defined in a kernel feature space.

To obtain the derivation for the nonlinear ASD, ASD is first
implicitly formulated in the feature space which in turn corre-
sponds to a nonlinear version of ASD in the input space. However,

the expression for ASD in the feature space is not tractable because
of possibly infinite dimensionality. The ASD expression in the fea-
ture space has to be kernelized using the kernel trick property of the
Mercer kernels [3] that converts the dot product of spectral vectors
in the feature space into a kernel function – a nonlinear function
defined in the input space. The final expression for the kernel-
ized ASD is referred to as the kernel adaptive subspace detector
(KASD), which is equivalent to a nonlinear ASD in the original
input space.

This paper is organized as follows. Section 2 introduces ASD
defined in the input space. In Section 3 we describe the ASD al-
gorithm in the feature space and reformulate the the expression in
terms of the kernel function using the kernel trick. Performance
comparison between the KASD and the conventional ASD algo-
rithms is provided in Section 4 and conclusions are given in Sec-
tion 5.

2. ADAPTIVE SUBSPACE DETECTOR

In this section, the general likelihood ratio test (GLRT) under the
two competing hypotheses (

� �
and

� �
) for a certain mixed pixel

problem is described. The subpixel detection model for a measure-
ment � (a pixel vector) is expressed as

� � � � � 
 � Target absent (1)� � � � � 
 � � � 
 � Target present

where 
 represents orthogonal matrices whose column vectors are
the eigenvectors that span the target subspace � 
 � ; � is an un-
known vector whose entries are coefficients that account for the
abundances of the corresponding column vectors of 
 ; 
 repre-
sents Gaussian random noise distributed as � � � � ! # .

In the model, � is assumed to be a background noise under� �
and a linear combination of a target subspace signal and a

background noise, distributed as � � 
 � � � ( ! # , under
� �

. The
background noise under the two hypotheses is represented by the
same covariance but different variances because of the existence
of subpixel targets under

� �
. The GLRT for the subpixel problem

described in [2] (so called ASD) is given by
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where 4! is the MLE of ! and =
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represents a threshold. Ex-
pression (2) has a constant false alarm rate (CFAR) property and is
also referred to as the adaptive cosine estimator (ACE) because (2)
measures the angle between >� and � >
 � where >� � 4! 5

� D
( �

and >
 � 4! 5
� D

( 
 .

IV - 6810-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



3. KERNEL ADAPTIVE SUBSPACE DETECTOR

3.1. Adaptive Subspace Detector in the Feature Space

We now define a new subpixel model by assuming the input data
has been implicitly mapped by a nonlinear function � into a high
dimensional feature space � . The subpixel model in � is then
given by

� � � � � � � 	 � 
 � � Target absent (3)� � � � � � � 	 � � � � � � � � 
 � � Target present

where � � represents full-rank matrices whose 
 �
column vectors

are the eigenvectors that span target subspace � � � � in � ; � �
is unknown vectors whose entries are coefficients that account for
the abundances of the corresponding column vectors of � � ; 
 �
represents Gaussian random noise distributed by � � � � � � 	 ; and

� � is the noise variance under
� � �

. The GLRT for the model (3)
in � is now given by

 � � � � 	 	 � � � � 	 # $� %
�

� � � � � # � $� %
�

� � � 	 %
�

� # � $� %
�

� � � � 	
� � � 	 # $� %

�
� � � � 	 �

(4)

where $� � is the MLE of � � .
Every term in (4) is in � , meaning that the calculation of (4)

is not feasible. The expression (4) has to be converted in term
of kernels using the kernel trick to obtain an expression that can
easily be calculated.

3.2. Kernel Methods and Kernel Trick

Suppose that the input hyperspectral data is represented by the data
space ( � � � � ) and � is a feature space associated with � by a
nonlinear mapping function �

� � � � � � � �� � � � 	 � (5)

where � is an input vector in � which is mapped into a potentially
much higher – (could be infinite) – dimensional feature space. Due
to the high dimensionality of the feature space � , it is computa-
tionally not feasible to implement directly in the feature space.
However, kernel-based learning algorithms use an effective kernel
trick given by Eq. (6) to implement dot products in feature space
by employing kernel functions [3]. The idea in kernel-based tech-
niques is to obtain a nonlinear version of an algorithm defined in
the input space by implicitly redefining it in the feature space and
then converting it in terms of dot products. The kernel trick is then
used to implicitly compute the dot products in � without map-
ping the input vectors into � ; therefore, in the kernel methods, the
mapping � does not need to be identified.

The kernel representation for the dot products in � is ex-
pressed as

� � � � � � � 	 � � � � � 	  � � � � 	 � (6)

where
�

is a kernel function in terms of the original data. There
are a large number of Mercer kernels that have the kernel trick
property, see [3] for detailed information about the properties of
different kernels and kernel-based learning. Our choice of kernel
in this paper is the Gaussian RBF kernel and the associated nonlin-
ear function � with this kernel generates a feature space of infinite
dimensionality.

3.3. Kernelization of Adaptive Subspace Detector in the Fea-
ture Space

In this subsection we show how to kernelize the ASD expression
(4) in the feature space. The MLE of the background covariance
matrix can be represented by its eigenvector decomposition or so
called spectral decomposition [8] given by

$� � � # � % # � # � (7)

where % is a diagonal matrix consisting of the eigenvalues and
# � is a matrix whose columns are the eigenvectors of $� � in the
feature space. The eigenvector matrix is represented by

# � � ( )
�

� ) *� + + + ) .� 0 � (8)

where 1 is the maximum number of eigenvectors with non-zero
eigenvalue.

The pseudoinverse of the estimated background covariance
matrix can also be written in terms of its eigenvector decompo-
sition [8] as

$� #� � # � % %
�

# � # + (9)

Each eigenvector ) � � in the feature space, as shown in [5], can be
expressed as a linear combination of the input reference vectors in
the feature space as shown by

) � � � .3
� 5 � 7 � � � � � � 	 � 8 � : < � (10)

where 8 � � ( � = � � � 	 � = � � * 	 + + + � = � � . 	 0 are the mean-removed
(centered) vectors in the feature space corresponding to the 1 in-
dependent background spectral signatures 8 � ( � � � * + + + � . 0
and : < � � 7 � � � 7 �

* � + + + � 7 �
. 	 # , @ � B � + + + � 1 �

, 1 � D 1 , the
expansion vector coefficients, are the nonzero eigenvectors of the
centered kernel matrix (Gram matrix) E F � 8 � 8 	 � � E F 	 � � , an1 I 1 matrix whose entries are the dot products

� � � � � � � 	 � �� � � � 	 � � � � � 	 � for � � � � � M 8 , normalized by the square root of
their corresponding eigenvalues [5]. For all the eigenvectors # �
in the feature space

# � � 8 � N � (11)

where N � ( : � : * + + + : . - 0 . Similarly, � � is given by

� � � P � Q � (12)

where P � � ( � = � S � 	 � = � S * 	 + + + � = � S T 	 0 are the mean-removed
(centered) vectors in the feature space corresponding to the 
 in-
dependent target spectral signatures P � ( S � S * + + + S T 0 andQ � ( W � W * + + + W T - 0 � 
 � � 
 � is a matrix consisting of the
 �

eigenvectors of the kernel matrix E � P � P 	 .
Now, the term � � � 	 # $� %

�
� � � in the numerator of (4) be-

comes

� � � 	 # $� %
�

� � � � � � � 	 # # � % %
�

# � # P � Q (13)

� � � � 	 # 8 � N % %
�

N # 8 � # P � Q
� X � � � 8 	 # E %

�
F E � 8 � P 	 Q [ E \ �

where N % %
� N # is substituted by E %

�
F using (29), as shown in

Appendix I. The dot product term � � � 	 # 8 � in (13) (referred
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to as an empirical kernel map [3]) is expressed as � � � � � � � �
� � � � 	 � 
 � 	 � � � 	 � � � 	 � � � 	 � � � 	 � � � � � � � 	 � � � � Similarly,

� � � �� �



� � � � � � � � � � � 	 � � � � �



� � � � 	 � � � � �� � (14)

Also,

� � � �� �



� � � � � � � � � 	 � � � � �



� � � � 	 � � � � (15)

The denominator of (4) is expressed as

� � � � � �� �



� � � � � � � � � 	 � � � � �



� � � � 	 � � � (16)

Finally, the kernelized expression of (4) is given by

� � � � � � � � � � � � � � � � � 	 � � � � �



� � � � 	 � � � � �



� ��
� � � 	 � � � � �



� � � � 	 � � �

(17)

If the original data is not centered, then the estimated mean
in the feature space can not be explicitly computed, therefore, the
kernel matrices have to be properly centered. As shown in [3],
the centered Gram matrix �� � can be obtained from the uncentered
Gram Matrix � � by

�� � � � � � � �
� � � � � � �

� � �
� � � �

� � 	 (18)

where � �
� � � � � � � � is an � � � matrix. The Gram matrix

� � � 	 � � needs also to be centered according to (18). Similarly,
the vector � � � 	 � � is centered by removing its corresponding em-
pirical kernel map mean ( �� � � 	 � � � � � � 	 � � �



�

� �� � 
  � � 	 � � � 	
� � ! � � .

4. EXPERIMENTAL RESULTS

In this section, we implemented both the proposed kernel ASD
detector (KASD) described by (17) and the conventional ASD de-
tector (ASD) described by (2) to detect targets of interest (military
vehicles) in the HYDICE (HYperspectral Digital Imagery Collec-
tion Experiment) images. The HYDICE imaging sensor generates
210 bands across the whole spectral range (0.4 – 2.5 	 � ) which
includes the visible and short-wave infrared (SWIR) bands. But
we only use 150 bands by discarding water absorption and low
signal to noise ratio (SNR) bands; the spectral bands used are the
23rd–101st, 109th–136th, and 152nd–194th.

(a)

Fig. 1. Sample band (48th) from the Desert Radiance II image.

The HYDICE image from the Desert Radiance II data collec-
tion was used to test both the kernel-based and conventional ASD
detectors. The Desert Radiance II (DR-II) image contains 6 targets
located in the dirt road, as shown in the sample band in Fig. 1.

The Gaussian RBF kernel,
 � � 	 " � � exp � � 
 � � � 
 �# � 	 was

used to implement KASD. � represents the width of the Gaussian
distribution and the value of c was chosen such that the overall data

variations can be fully exploited by the Gaussian RBF function. In
this paper, the value of � was determined experimentally and was
set to 5.

The Gaussian RBF kernel was chosen based on two particu-
lar reasons; first, it is a translation invariant kernel and second,
its associated non-linear map is smooth. Translation invariant ker-
nels can normally provide robust detection performance even when
spectral signatures in a given hyperspectral data set were subject
to irregular illumination, because it only depends on the difference
between � and " , not the absolute positions of individual spec-
tral vectors. The smooth non-linear mapping � associated with
the Gaussian RBF kernel implies that the topographic ordering of
the data in the input space is preserved in the feature space after
the nonlinear mapping [4]. The mapped data in the feature space
also occupies a small subspace of the feature space where data be-
longing to different classes may be separated by a larger degree
than in the input space [3], thus making a target detection task in
the feature space associated with the Gaussian RBF kernel more
effective.

(a)

(b)

Fig. 2. Detector output for the Desert Radiance II image using
KASD and ASD. (a) KASD and (b) ASD.
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Fig. 3. ROC curves obtained by KASD and ASD for the Desert
Radiance II image.

In implementing KASD and ASD the background samples
were obtained from outside the test images to estimate the back-
ground subspace. Due to a lack of available target samples, the
target samples from the HYDICE test set were used: the right most
target in the DR-II image, as shown in Fig. 1, was used to gener-
ate the target subspace for all the targets in the test image. Figs.
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2-3 show the detection results including the ROC curves generated
by applying KASD and ASD to the DR-II image. KASD showed
significantly improved target detection performance over ASD, as
shown by the ROC curves in Fig 3.

5. CONCLUSIONS

We have presented a kernel realization of the nonlinear adaptive
subspace detector by kernelizing the corresponding ASD expres-
sion defined in a high dimensional feature space. The complete
kernelization procedure for the ASD expression was derived. Ker-
nel ASD, was applied to hyperspectral subpixel target detection
and its performance was compared to the conventional ASD. The
detection results based on the given HYDICE image confirmed
that the kernel ASD outperforms the conventional ASD.

6. APPENDIX I. (KERNEL PCA)

In this Appendix, we present derivation of Kernel PCA and its
properties providing the relationship between the covariance ma-
trix and the corresponding Gram matrix. Our goal is to prove� �

�
� � � � �

� � � . To drive the Kernel PCA consider the esti-
mated background clutter covariance matrix in the feature space
and assume that the input data has been normalized (centered) to
have zero mean. The estimated covariance matrix in the feature
space is given by

�� � � � � � � � � (19)

The PCA eigenvectors are computed by solving the eigenvalue
problem

� � � � �� � � � (20)

� 	



��

 � � � � � 
 
 � � � 
 
 � � �

� 	



��

 � � � � � � 
 
 
 � � � � � � 
 
 


where � � is an eigenvector in � with a corresponding nonzero
eigenvalue

�
. Substituting (10) into (20) and multiplying with� � � � 
 � , � � 	 
 � � � 
 
 , yields

� ��

 � � � 
 � � � � � 
 
 � � � 
 
 � (21)

� 	



��

 � � � 
 � � � � 
 � � � 
 
 � � � 
 
 � ��


 � � � � � 
 


� 	



��

 � � � 
 � � � � � 
 
 ��

� � � � � � � 
 � � � � � 
 
 � � � 
 
 � � 


for all � � 	 
 � � � 
 
 .

Now (21) can be written as


 � � � � � � �� � 
 (22)

where � � � � � � 
 
 � the 
 � 
 kernel matrix (Gram matrix)
whose entries are the dot products � � � � 
 
 
 � � � � 
 � . The so-
lutions of (22) are obtained by solving the following eigenvalue
problem 
 � � � � � � 
 (23)

where � are the eigenvectors with nonzero eigenvalues of the ker-
nel matrix � � . Note that � need to be normalized by the square
root of their corresponding eigenvalues.

From the definition of PCA in the feature space (20) the esti-
mated background covariance matrix is decomposed as

�� � � # � � # � � 
 (24)

where # � � % � �
� � �� � � � � �� ' and � is a diagonal matrix with

its diagonal elements being the eigenvalues of �� � . Similarly, from
the the Kernel PCA (23) the kernel matrix eigen decomposition is
given by

� � � � � � � 
 (25)

where � � % � � � � � � � � � ' are the eigenvectors of the kernel
matrix and � is a diagonal matrix with diagonal values equal to
the eigenvalues of the kernel matrix � � . Then, the pseudoinverse

background covariance matrix �� # and inverse Gram matrix � �
�

�
can also be written as

�� #� � # � � �
�

# � � (26)

and

� �
�

� � � � �
�

� � 
 (27)

respectively. The eigenvalues of the covariance matrix in the fea-
ture space and the eigenvalues of the kernel matrix are related by

� � 	

 � � (28)

Substituting (28) into (27) we obtain the relationship

� �
�

� � 	

 � � �

�
� � 
 (29)

where 
 is a constant representing the total number of background
clutter samples which can be ignored.
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