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ABSTRACT

The problem of variable selection is one of the most pervasive
model selection problems in statistical applications. It arises when
one wants to explain the observations or data adequately by a sub-
set of possible regression variables. The objective is to identify
factors of importance and to include only variables that contribute
significantly to the reduction of the prediction error.

Numerous selection procedures have been proposed in the
classical multiple linear regression model. We extend one of the
most popular methods developped in this context, the backward
selection procedure, to a more general class of models.

In the basic linear regression model, errors are present on the
observations only, if errors are present on the regressors as well,
one gets the errors-in-variables model which for Gaussian noise
becomes the total-least-squares model, this is the context consid-
ered here.

1. INTRODUCTION

The aim of variable selection is to model the relationship between
an observation vector and a subset of potential regressors. Not
every regressor is relevant, some of them might be redundant or
unrelated. Therefore, it becomes necessary to choose a good sub-
set of regressors especially when their number is important. This
process is called variable selection or subset selection.

In the litterature, a lot of models have already been proposed,
the most widely used being the linear regression. The variable
selection problem is most familiar in the linear regression context
where attention is restricted to normal linear models.

More formaly, let � be an observation vector and � � � � � � � � � a
set of potential regressors participating the observation, each com-
ponent of � corresponds to an experimentation. The design matrix

� 
 � � � � contains all the possible regressors. Selecting variable
is then equivalent to finding the good subset of columns which ac-
tually takes part to the regression. The model can be written as:

� � � � � � � � (1)

where � is a � -dimensional vector, � � the � -dimensional vector
of regression coefficients and � ! # $ & � ( * , - , the measurement
error vector. We assume that there are more experimentations than
possible regressors, � / � , and that � is full column-rank.

Ideally to get the best subset according to a given criterion,
one has to examine all the 1 � 3 5 possible models. The most
common criterion are the Residual Sum of Squares, 6 8 8 or 6 *
[1] , and Mallows’ : $ � - statistic [2]. But the computational
complexity of such an exhaustive search makes this approach
impratical for even reasonable numbers of regressors. To circum-
vent this difficulty, many algorithms have been proposed in the

litterature. A good compromise between computation time and
efficiency is provided by the Stepwise Procedures. These include
forward selection procedure, backward elimination procedure and
stepwise regression. All these procedures add or remove variables
one-at-a-time until some stopping rule is satisfied. In the sequel,
we will consider the Backward Elimination Procedures (BEP) in
which the idea is to begin with the complete model and to remove
the least relevant regressor at each iteration until a preselected
significance level tells us that no further removal is justified. It
is well known that such procedures can be far from optimal and
no global significance level or overall power can be guaranteed
[3, 4, 5].

An extension of the BEP is considered here. We replace the
basic linear regression model (1) in which only the measurements
in � are assumed to be corrupted by errors, by the so-called errors-
in-variables model [6] in which the regression matrix � itself is
not known precisely and is contaminated by errors. The model
becomes � � � � � � � with ? � � � A � (2)

where the vector � and the matrix ? are known or observed, � and
A modeling the errors. When these errors are assumed to be Gaus-
sian, the least squares (LS) model associated with (1) becomes
then the total least squares (TLS) model [7, 8] . The idea which is
developed here is to apply the BEP to the TLS model. This paper
is organized as follows: the known results in the LS problem and
the backward algorithm are described in section 2, the extension
to the TLS model and the corresponding algorithm are proposed
in section 3. Then, in section 4, the efficiency of both algorithms
are compared on two types of data: simulated data and Hald’s data
and we conclude in section 5.

2. THE LS CASE

In the basic multiple regression model (1) with Gaussian noise on
the observations � ! # $ & � ( * , - , the Maximum Likelihood (ML)
estimate of the vector � � of weights is obtained by solving the
Least Squares (LS) problem

F G HI K � 3 � � K ** (3)

L F G HM I K N K ** subject to � � � � � N �

where K N K **
� R N *S denotes the square of the T * -norm. The opti-

mum is attained at U� � � V � where � V � $ � Y � - [ � � Y is the
Moore-Penrose inverse of � which is assumed to be full column-
rank. Some properties of this estimate are:
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� � � �� � � � � , no bias� � � 	 � �� � � � � � � � � � � � ,� �� � � � � �
� � � where � � � � � � � � �� � �� ,� �� � � � � � ! � � � � � � � � � � ,� �� and �� � are independent.

After the full weight vector �� has been obtained, the BEP decides
if a component of �� 
 or equivalently a column � 
 of � can be
removed from the model. The procedure admits two distinct sta-
tistical justifications that yield exactly the same decisions. The
first method tests if �� 
 should be declared equal to zero or not and
eliminates the associated regressor if the test is positive. This is
called the Student Test. The idea of the second method is to re-
move a regressor whose contribution to the prediction is probably
non-relevant, i.e. if the increase of the residual sum of squares
following its deletion is small: this is done in the Fisher test.

2.1. Backward Elimination procedure with the Student test

In the Student test approach, the emphasis is put on the weights,
the components in �� . Some statistical results must be given to
explain the test.

The Student law of parameter � is the law of � � � � � � with� � � � & ! ' � and � � � �� , � and � being independent. Ob-

serving that � ( � ) � �� �� � � � �� � � , the properties of the full model

parameter �� properties given above allows to etablish the follow-
ing proposition:
Proposition 1 In the LS context developped above, � � � ' ! , , ! ) :

� 
 � �� 
 � � �
�
�� � �� 
 �

where �� � �� 
 � � �� � � � � � � � � � � 
 " 
 follows a Student law of pa-
rameter � ( � ) � . #
The idea is to test if � �
 � & by comparing

� 
 � �� 
 � �
�� � �� 
 �

to a sample from a Student law of parameter � ( � ) � . Hence the
following algorithm starts with the full model and ) ' � ) :

1. Compute the current complete model estimate ��
2. Test of the lowest

� 
 associated with its ) � components� If
� 
 ) + � � � - � ' � / � , removal of the j-th regres-

sor � 
 from the current regressor matrix, set ) � / � �
) � � ' and return to 0 ,� Else stop and accept the current reduced model,

where + � � � � ' � / � is the quantile fonction of the Student law of
parameter � ( � ) � and � ' � / � is the confidence parameter. In this
test, the stress is on the value of �� components. If the value is in a
confidence interval, it is declared to come from a zero component
of � � .

2.2. Backward Elimination procedure with the Fisher test

In the Fisher test the emphasis is put on the regressors influence.
The idea is to find the regressor whose elimination leads to the
smallest increase in the residual sum of squares, and to eliminate
it if this increase is not significantly larger than the noise variance.
The Fisher-Snedecor law with parameters � � ! 4 � is the law of

� � � � � � � � � 4 � where � � � �� and � � � �9 are independent. Using
the statistical properties of the LS estimate, we already indicated
that � � �� � � � ( � ) � �� �� � � � �� � � . Now let us introduce � � � 
 ,
the residual sum of squares obtained after removal of � 
 the j-th
column in �

� � � 
 � 2 4 56 � � � � � � � subject to � 
 � & !

if � �
 � & ,
� � � = � � � �� � � � � � and the random variable> 
 � � � � 
 � � � �

� � � � � ( � ) �
follows a Fisher-Snedecor law of parameters � ' ! ( � ) � . The
BEP based on the Fisher test is build around

> 
 . It is an iterative
algorithm that proceeds as in the Student procedure described
above with step 2 therein replaced by

2. Compute
> 
 � � � � = � � � �� � � ? @ � � � A where � � � 
 is the lowest

Residual Sum of Squares obtained by removing one of regressors
from the current model� If

> 
 ) D � " � � � � ' � / � , removal of the corresponding re-
gressor and variable associated and return to 1.� Else stop and accept the current model,

where D � " � � � � ' � / � is the quantile fonction of the Fisher-
Snedecor law of parameters � ' ! ( � ) � and � ' � / � are the confi-
dence parameter. Due to lack of space, we do not establish that at a
given step in both iteration procedures, one actually has

� �
 � > 

and thus strict equivalence of both procedure for identical / ’s.
This can be established using for instance, results concerning the
pseudo-inverse of partitionned matrices, to link �� and the optimal
parameter vector obtained when � 
 is deleted, and similarly � � �
and � � � 
 .

3. THE TLS MODEL

3.1. The new model

In model (2), we introduce the possibility for the regressors to be
corrupted by additive noise as well as the observations. For obvi-
ous practical reasons1, we generalize this model to the case where
some regressors are perfectly known (so far the standard assump-
tion) those in the

�
matrix below, and the others, those in the �

matrix, are subject to noise. The model (2) thus becomes:
� � � � � ; � � �' ; <

= � � ; � ! (4)

which can be rewritten as, isolating row H :
� ? � � �? � � ; � �? � �' ; < ?
= ? � � ? ; � ? ,

We assume that the columns of the noisy matrix � are indepen-
dent. The errors < ? and � ? are then independent Gaussian noises
with variance � � and covariance matrix � � I � respectively (one
needs to assume that I � is known since it is not identifiable). The
ML estimates of the parameters are part of the solution of:

2 4 56 K " 6 " L N O ? � � ? � � �? � � � �? � ' � � ; � = ? � � ? � � I � � � = ? � � ? � !

1In multiple linear regression one systematically introduces a column
of ones in the P matrix to allow for an intercept parameter. This is but one
example of perfectly known regressor.

IV - 678

➡ ➡



or in matrix notations

� � �� � � � � � � � � 	 � � � � � � �� 
 � � � � 	 � � � � � �� �

where � 	 � �� � � � � 	 � �� � 	 � trace � 	 	 � � denotes the square
of the Frobenius norm of 	 . The problem is separable and the
minimum with respect to � � is attained at: �� � � � � � � � 	 � � .
Before we replace �� � by its optimum, let us define � � � � � � �
the projection of the column vector � on the range space of

�

and � � � � � � � � � � � the projection on the orthogonal of the
range of

�
. We define similarly 	 � � 	 � � � � and � � . Then, after

subtitution we get:

� � �� � � � � � 	 � � � � 	 � � � �� 
 � � � � � 	 � � � � � � ��

 � � � � � 	 � � � � � � �� � (5)

Here again, the minimum with respect to 	 � is attained at: 	 � �
� � � � � � � , and the last term in (5) vanishes. We now in-
troduce � a full column rank orthogonal matrix that is such that

� � � � � � � � � . Thus (5) becomes:

� � �� � � � � � � � � � � 	 � � � �� 
 � � � � � � 	 � � � � � �� �

Defining �! � � � ! � � � � � � 	 � � , �� � � � � � � 	 � � � � and�� � � � , this problem is in turn equivalent to:

� � ��� � �� � �� � �! � �� 
 � �� � �� s.t. � � � � �! � � � � � � � � � �� � �� �

The purpose of these transformations is to reduce the number of
unknowns to their minimum, making them independent. In this
last form, it is now possible to recognize the standard formulation
that links the TLS problem with the Singular Value Decomposition
[7, 8]. One seeks the minimal Frobenius norm perturbation matrix
say �� � � �� � �! � that makes� � � � �! $ Range � � � � � � � � �� � �

The optimum [7, 8] is a rank one matrix built using the smallest

singular triplet of the matrix � �& � � � � � � � � � � � � � . The
optimal �� , the ML estimate of � � ' , is deduced from the smallest
right singular vector � ( � � by the following relation� �� � � � ) � � � � �( � � � � ( � � � + 
 ) � � (6)

i.e., one normalizes the last component of � ( � � to � ) .

3.2. The TLS Backward Elimination procedure

The idea is to use a backward approach with the student Test sim-
ilar to the one used in the LS case when testing the components.
In the sequel, to simplify the presentation, we will suppose that

� � � and that there are no regressor stricly known in (4) except
for the constant regressor, we denote

�
, corresponding to a column

of ones which allows to capture the intercept parameter that is con-
sidered to be systematically present in any multiple linear regres-
sion model [3]. To take care of this peculiarity, one projects (see
(5)) the observed matrices on the orthogonal of the range space of�

by using  � � � �
-

� � � � � � � . And the ML parameter

estimate �� is deduced (see (6)) from the smallest or minimal right
singular vector of the matrix �& � � � � � � � � � � . To assess its

statistical properties one can either, say ML techniques and com-
pute the Fisher Information matrix [10] or use results from ma-
trix perturbation theory. We adopt this second approach with the
following perturbation model �& � & 
 0 �

where & is the ex-
act but unknown underlying matrix & � � � � 	 � � � 	 � � and

0 � � � � � 1 � � � ! � . The common standard deviation 0 has
been factorized to highlight the fact that it is this quantity that has
to be small for the perturbation results to hold. Let us introduce
the following notations: & � � 2 
 � and �& � �� �2 �
 � denote the
SVD of & and �& respectively with � � �� � 
 and �
 square orthog-
onal matrices and 2 � �2 matrices of the dimensions of & :

2 �
&'

2 � 4
4 ( ( � �
4 4

)*
� �2 �

&'
�2 � 4

4 �( ( � �
4 4

)*
�

where 2 � and �2 � order-p diagonal matrices. 2 � �
diag � ( � � ( � � � � � � ( ( � and ( � - ( � - � � � - ( ( 6 ( ( � � � 4 . Note
that & , the exact matrix has one zero singular value ( ( � � and that
we are precisely interested in the way its right singular vector is
perturbed. For small 0 one can expect that the difference between

�� ( � � and � ( � � is of the order of 0 . This is indeed true and one can
establish [11, 12, 13, 14] the following results.

Proposition 2 If ( ( . 0 0 8 � + , then:
� E � �� ( � � � � � ( � � 
 2 � 0 � � no first order bias,
� E � 3� 3� � � � 0 � � 
 � 2 � �� 
 �� � 
 2 � 0 6 � with 3� � �� ( � � � � ( � � ,
� E � �( �( � � � � � 8 � + � 0 � 
 2 � 0 6 � ,
� �� ( � � and �( ( � � are independent, �

where 
 � is such as & � � 2 
 � � � � 2 � 
 �� . Similarly to the
results of the LS case where �0 � � � � � 	 �� � � � � 8 � + � is an
unbiased estimate of 0 , in the TLS case, an unbiased estimate of
the common variance 0 � is given by �0 � � �( �( � � � � 8 � + � . It follows
that

� 	 � �� ( � � � � � � � ( � � � � �
�0 � 
 � 2 � �� 
 �� � 9�	 � 	

follows a Student law of paramater � 8 � + � . It is then logical to
propose the same algorithm than in LS case with the Student test.
Yet as we don’t have access to the & matrix, we remplace 
 � and

2 � by �
 � and �2 � in
� 	 . Note also that since a normalization is

performed, it is equivalent to test �� � � � or �� ( � � � � � .

4. EXPERIMENTAL RESULTS

Results are presented for both the basic LS backward elimination
procedure and our approach, applied to two sorts of data: simu-
lated data and the Hald data set. In both cases, the

� � ; regressor
is assumed to participate to the regression and consequently it will
not be tested.

In the simulated case, the data set corresponds to 8 � ) <
observations and + � > possible regressors including the 3 re-
gressors which describe effectively the regression. The compo-
nents of the 	 matrix are independent samples from a > � 4 � � � .
Gaussian noise was added to both 	 and � according to the TLS
model assumptions, making these simulations favorable to our ap-
proach. The tests were done with a Student test with signifiance
level at 10 %. The TLS-backward elimination procedure (TLS-
BEP) retrieves systematically the true selection when the noise
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level satisfies the assumptions given in Proposition 2. The LS-
backward elimination procedure generally retains too many vari-
ables. A typical result is the following where the true selection is

� � � � � � � � � � .

Simulated Data � � � � � � � �
Selected Data Ordered removed Data

LS-BEP � � � � � � � � � � � � 
 � � � � �
�

TLS-BEP � � � � � � � � � 
 � � � � �
�

� � �

Note that both approaches reject the regressors in the same order
but the LS-BEP stops earlier and keeps a wrong regressor in the
selection.

We now present some results using real data: the Hald data
set [3]. It is a data set with � � 
 � observations and � � 


regressors. The tests are done with a Student test for signifiance
at the 10 % level. The exact model is of course unknown. But
since the measures made to get the components of the regressors
are of the same kind as those made to get the observations, the
TLS model seems quite natural and justified. Remember that in
the TLS model (4) the noise variance on the measurements � is
denoted � � and the noise on the rows � �� of the regressor matrix

� is � � � � . In the sequel, we take � � � � �� � so that � � represents
the ratio between the observation noise variance and the common
regressor noise variance (as � � � , one tends towards the LS
model). Three different cases have been encountered. We can note
that the results obtained by the LS-BEP are of course unaffected
by these modifications and remain the same.

Case 1: 

� � �

�

Selected Data Ordered removed Data
LS-BEP � 
 � � � �

�
� � �

TLS-BEP � 
 � � � � �
�

� � �

In this case, the different noises are of similar magnitudes. The
BEP declares two variables as unrelevant whereas the TLS-BEP
selects all the regressors.

Case 2: 
 � � �

 �

Selected Data Ordered removed Data
LS-BEP � 
 � � � �

�
� � �

TLS-BEP � 
 � � � � � � �
�

The case is very interessant because both algorithms remove the
same variables but not in the same order. If we suppose that
the perturbations on the regressors are small but still significant
enough, the � � regressor is considered as the least relevant regres-
sor in the TLS approach whereas it is �

�
for the classical BEP.

Case 3: � �

 �

Selected Data Ordered removed Data
LS-BEP � 
 � � � �

�
� � �

TLS-BEP � 
 � � � �
�

� � �

In this third case both algorithms find the same result. Indeed for
� large, the TLS model is close to the LS model. It is then logical
to have the same results.
More investigations on different dataset need to be performed to
assess the potentialities of the proposed approach.

5. CONCLUSION

The Backward Elimination Procedure is a useful and powerful al-
gorithm that allows to select variables in multiple linear regression
schemes. It has been developped and is used for Least Squares
models where it is assumed that (Gaussian) errors are only present
in the observation vector � that one wants to explain.

In many practical situations, the components of some regres-
sors � � are essentially of the same nature as the components of
the observation vector � . There is thus no reason to consider these
regressors to be known exactly as is done in the standard Least
Squares model. More generally it seems natural, depending upon
the type of the regressors to consider that some are subject to noise
while others (e.g. those having integer values) are known exactly
and to develop selection procedures that allow to take this possi-
bility into account.

The multiple linear regression model where Gaussian noise is
assumed to be present not only on the observations but also on
part of the regressors is known as the Total Least Squares (TLS)
model. We have developped the Backward Elimination procedure
for this type of models. For this we have analysed the statistical
properties of the corresponding Maximum Likelihood parameter
vector estimate using results from matrix perturbation analysis and
developed a Student test that allows to decide if a component of the
estimated vector should be declared equal to zero.

It is also possible to develop a Fisher test and, besides per-
forming intensive results evaluations. We plan to analyse the ad-
vantages or disadvantages of both approaches.
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