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Güneş Z. Karabulut1, Lucia Moura1, Daniel Panario2, Abbas Yongaçoḡlu1
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ABSTRACT

The orthogonal matching pursuit (OMP) algorithm is an
adaptive nonlinear algorithm for signal decomposition us-
ing an overcomplete dictionary. In [1], a tree-search based
orthogonal matching pursuit (TB-OMP) is proposed. Al-
though the TB-OMP algorithm improves the approximation
performance, its computation time requirement increases
exponentially making the algorithm impractical for certain
applications. In this paper, we propose the flexible tree-
search based orthogonal matching pursuit (FTB-OMP). The
algorithm provides design parameters that give flexibility
to establish a tradeoff between approximation performance
and experimental time complexity. Sparse signal represen-
tations are frequently required in problems related to signal
processing and communication areas. The proposed FTB-
OMP algorithm is a promising solution for such problems.

1. INTRODUCTION

The problem of basis selection for signal decomposition
consists of determining a small, possibly the smallest, sub-
set of vectors chosen from a large redundant set of vectors
to match the given data. In the literature, basis selection al-
gorithms are adopted to the specific application considered.
Some of these applications are time/frequency representa-
tions [2] and speech coding [3].

Finding the smallest basis set is NP hard [4]. Hence it
is not expected that one could find an efficient algorithm
to solve this problem exactly. Greedy heuristic algorithms
have been proposed as a fast method to obtain approximate
solutions. These algorithms employ sequential selection of
basis vectors from an overcomplete set of vectors called dic-
tionary. In this paper, these algorithms are referred to as se-
quential basis selection (SBS) algorithms. SBS algorithms
include matching pursuit (MP) [2], orthogonal matching pur-
suit (OMP) [5], and order recursive matching pursuit (ORMP)
[4]. The OMP algorithm gives a good compromise between
the performance and complexity among them [1]. Hence
we focus on OMP.

A shortcoming of the OMP algorithm is that an erro-
neous decision on the initial iterations prevents the algo-
rithm to find a good approximation to the input signal. In
[1], a tree-search based OMP (TB-OMP) is proposed by
substituting a single vector selection at each iteration by
considering L possible vectors. In this way, the greedy
heuristic is substituted by a more complete search on a tree
with branching factor L. The TB-OMP algorithm dramat-
ically improves the approximation performance of OMP,
since it explores several choices at each iteration. However,
algorithm’s time complexity increases exponentially, mak-
ing the algorithm impractical for applications where speed
is a concern.

In this paper, we propose an efficient, flexible tree-search
based orthogonal matching pursuit (FTB-OMP) algorithm
for signal representation. The efficiency is achieved by re-
ducing the number of children as the depth of nodes in-
creases via the exponentially decaying characteristics of the
search algorithm. Further time efficiency is achieved by us-
ing a correlation-based pruning in the search tree. Through
the use of the design parameters, FTB-OMP offers numer-
ous variations which range from OMP to TB-OMP. It should
be noted that the exponentially decaying tree-search strat-
egy is proposed in this paper for the first time, to the best of
authors’ knowledge.

Solving an overcomplete set of linear equations is en-
countered in several communications and signal processing
applications, such as the angle of arrival detection [6] and
the channel estimation [7] problems. The flexible and effi-
cient nature of the proposed FTB-OMP algorithm, achieved
via the design parameters, makes it a promising candidate
for applications where a sparse signal representation is of
interest.

This paper is organized as follows. In Section 2, a liter-
ature review of the existing OMP and TB-OMP algorithms
is given. The proposed FTB-OMP algorithm is presented in
Section 3. In Section 4, we give experimental results com-
paring approximation and detection performance and com-
puter running times of the proposed algorithm. Conclusions
are given in Section 5.
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2. BACKGROUND ON EXISTING ALGORITHMS

Let D = {ak}n
k=1 be a dictionary of vectors which is highly

redundant, i.e. ak ∈ Cm and m << n with Cm = Span (D).
The best basis selection problem can be viewed as finding
the sparsest solution to a linear system of equations. More
precisely, if we form a matrix A from the columns of the
dictionary D, A = [a1, a2, . . . , an], the problem can be
stated as finding an x̄, with at most r non-zero entries such
that

‖Ax̄− x‖ ≤ ε, (1)

for given ε ≥ 0, and r > 1. For ε = 0, i.e. the perfect rep-
resentation case, the problem reduces to solving the system
Ax̄ = x.

2.1. Orthogonal Matching Pursuit Algorithm

The orthogonal matching pursuit (OMP) algorithm is pro-
posed in [5]. The OMP algorithm is also called modified
matching pursuit algorithm in [8], from which we take the
notation presented here. Let the residual vector after the
pth iteration be denoted by bp, with b0 = x. Let PSp de-
note the orthogonal projection matrix onto the range space
of Sp, and P⊥

Sp
= I − PSp denote its orthogonal comple-

ment, with PS0 = 0 and P⊥
S0

= I. The projection matrix on
the space spanned by ak, with ‖ak‖ = 1, is Pak = akaT

k .
The algorithm terminates after r iterations.

The OMP algorithm selects kp in the pth iteration by
finding the vector best aligned with the residual obtained by
projecting b onto the orthogonal complement of the range
space Sp−1, that is

kp = arg max
l

|aT
l bp−1|, l /∈ Ip−1. (2)

With the initial values, â0
kp

= akp , q0 = 0, applying the
orthogonalization process as

âl
kp

= âl−1
kp

− (qT
l−1â

l−1
kp

)ql−1, l = 1, 2, ..., p, (3)

and normalization as

qp =
âp

kp

‖âp
kp
‖ , (4)

we can write

PSp = PSp−1 + qpq
T
p . (5)

The residual bp is updated as

bp = P⊥
Sp

bp−1 = bp−1 − (qT
p bp−1)qp. (6)

The algorithm terminates when either p = r, or ‖bp‖ ≤ ε.

2.2. Tree-Search Based Orthogonal Matching Pursuit
Algorithm

The tree-search based orthogonalmatching pursuit (TB-OMP)
algorithm is proposed in [1]. In this algorithm, the best
matching vector indices {k(1)

p , k
(2)
p , . . . , k

(L)
p } at the pth it-

eration are selected according to

k(i)
p = arg max

l
|aT

l P⊥
Sp−1

b|,
l �= {k(1)

p , k(2)
p , . . . , k(i−1)

p }, i = 1, . . . , L. (7)

Each of these vectors represents one alternative to be
explored in each of the branches for the current partial so-
lution. This algorithm follows the same basic iterations as
OMP, but explores L choices for the next vector selected at
each iteration. At the end of r iterations, the search grows
exponentially to a tree with Lr leaves. The leaf correspond-
ing to the smallest residual error vector yields the solution.

3. FLEXIBLE TREE-SEARCH BASED
ORTHOGONAL MATCHING PURSUIT

ALGORITHM

In this section, we introduce an efficient tree-search based
OMP algorithmwith branch pruning: the flexible tree-search
based orthogonal matching pursuit (FTB-OMP) algorithm.
Let us first introduce the decaying parameter d ≥ 1, which
affects the tree structure by reducing the branching factor at
each iteration. A maximum of L branches are searched at
each partial solution. In the initial iteration, the branching
factor is set to L; at the ith iteration the branching factor
is set to �L/di�, where �·� represents the ceiling function.
The idea in this algorithm is to start the search with a large
number of branches at the initial iteration where an erro-
neous selection is more likely to appear, and to reduce the
branching factor as the number of iterations increases.

Further reduction on the tree size is achieved by the cor-
relation threshold 0 ≤ ξ ≤ 1. Our objective is to prune
the tree branches that are heuristically believed to be un-
necessary. Our heuristic is to keep only the branches among
k

(1)
p , k

(2)
p , . . . , k

(L)
p which are closely “aligned” with OMP’s

first choice branch k
(1)
p . We measure this alignment by the

correlation between vectors which is defined as

ρij =
〈ai, aj〉
‖ai‖ ‖aj‖ . (8)

A branch is assumed to be unnecessary when the candidate
vector is not aligned with k

(1)
p , that is when |ρ

k
(1)
p ,k

(i)
p
| < ξ.

A pseudocode for FTB-OMP is given in Table 1. Note
that FTB-OMP is a generalization of both OMP and TB-
OMP algorithms. By choosing ξ = 1, we require full align-
ment so that only k

(1)
p is kept, reproducing OMP. By choos-

ing ξ = 0, and d = 1, we place no restriction on alignment,
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reproducing TB-OMP. A value 0 < ξ < 1 represents a com-
promise between the number of tree nodes for OMP (r + 1
nodes), and for TB-OMP (Lr+1−1

L−1 nodes).

Table 1. Pseudo-code for FTB-OMP

FTB-OMP (d, p, r,L, ξ, ε)

Global K = [k1, k2, . . .], Best res, Best k
Calculate bp−1 as in (6)
If ‖bp−1‖ <Best res

Best k=[k1, . . . , kp−1]
Best res← ‖bp−1‖

end
If p > r or ‖bp−1‖ < ε, then return
Calculate {k(1)

p , k
(2)
p , . . . , k

(L)
p } as in (7)

For each i = 1 to L do
If |ρ

k
(1)
p ,k

(i)
p
| ≥ ξ

kp = k
(i)
p

FTB-OMP (d, p + 1, r, �L/d�, ξ, ε)
end

end

4. EXPERIMENTAL RESULTS

In order to compare the approximation performance and the
search tree sizes of the proposed algorithm, various param-
eter combinations are considered. The experiments are run
using MATLAB on Windows XP environment of 2.4 GHZ
CPU, and 1024 MB of RAM.

In order to compare the algorithm complexities, we con-
sidered the number of search nodes and computer running
times averaged over 1000 runs. Under a different envi-
ronment a faster implementation is possible by employing

Table 2. Component detection experiment with various L
and d values for ξ = 0.

TB-OMP FTB-OMP OMP

L 3 8 16 32 1
d 1 2 4 4 1
ξ 0 0 0 0 0

ncd-0 0.6 1.3 1.3 0.6 15.2
ncd-1 0.7 1.7 1.4 1.1 6.9
ncd-2 0.6 0.9 1 0.6 4
ncd-3 0.5 0.9 0.8 0.6 2.9
ncd-4 1.1 1.1 1.2 1 2.4
ncd-5 0.7 0.9 0.8 0.7 2.1
ncd-6 1.6 1.3 1.4 1.2 1.4
ncd-7 0.4 0.6 0.6 0.4 0.6
ncd-8 93.8 91.3 91.5 93.8 64.5

tavg 3.5653 0.16788 0.20186 1.3095 0.011263
lvavg 6561 64 64 512 1
Navg 9841 425 465 3391 9
MSE 0.01093 0.01502 0.015076 0.010181 0.10609

Table 3. Component detection experiment with various ξ
values for L = 32, d = 4.

FTB-OMP

L 32 32 32 32 32
d 4 4 4 4 4
ξ 0.05 0.1 0.15 0.2 0.8

ncd-0 0.7 0.8 1.1 1.5 15.2
ncd-1 1.1 1.2 1.4 1.6 6.9
ncd-2 0.6 0.7 0.7 0.7 4
ncd-3 0.8 0.8 0.9 1.1 2.9
ncd-4 1 1 1.2 1.4 2.4
ncd-5 0.7 0.7 0.8 1.1 2.1
ncd-6 1.2 1.2 1.5 1.5 1.4
ncd-7 0.3 0.5 0.6 0.4 0.6
ncd-8 93.6 93.1 91.8 90.7 64.5

tavg 1.0945 0.81992 0.54259 0.32489 0.01283
lvavg 396.36 286.27 182.21 109.4 1
Navg 2615.2 1902.1 1224.1 743.98 9
MSE 0.010562 0.011431 0.013137 0.015788 0.10609

Table 4. Component detection experiment with various ξ
values for L = 3, d = 1.

FTB-OMP

L 3 3 3 3 3
d 1 1 1 1 1
ξ 0.05 0.1 0.15 0.2 0.8

ncd-0 0.8 0.8 1 1.7 15.2
ncd-1 1 1 1.1 1.7 6.9
ncd-2 0.6 0.8 0.7 0.8 4
ncd-3 0.5 0.5 0.4 0.4 2.9
ncd-4 1.1 1.2 1.3 1.7 2.4
ncd-5 0.7 0.8 0.9 1 2.1
ncd-6 1.5 1.7 1.8 1.7 1.4
ncd-7 0.5 0.6 0.8 0.5 0.6
ncd-8 93.3 92.6 92 90.5 64.5

tavg 2.2583 1.3115 0.65108 0.32892 0.011015
lvavg 3893.8 2022.5 868.99 367.6 1
Navg 6037.2 3283.6 1508.5 692.17 9
MSE 0.01151 0.012895 0.013893 0.017443 0.10609

faster machines and lower level programming languages.
The dictionary is created as a 32 × 128 matrix whose

components are independent Gaussian randomvariables with
mean 0 and variance 1. A sparse solution for x is created us-
ing 8 dictionary components with randomamplitudes. Gaus-
sian noise is then added to x so that the signal to noise ratio
(SNR) is 40 dB. The parameter ε is selected as 10−10. The
algorithms are run for 1000 distinct input vectors, and the
correctly detected number of components are counted. The
average running times of the algorithms and average num-
ber of nodes searched are evaluated. The experiment results
are given in Tables 2 to 4. In these tables, ncd-i represents
the average percentage that exactly i components are identi-
fied correctly, tavg represents the average computer running
time in seconds, and MSE represents the average residual
approximation error after 8th iteration. The average number
of searched nodes and the average number of leaves in the
search tree are represented by lvavg and Navg , respectively.

In Table 2, various L and d values are investigated with
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no correlation based pruning (ξ = 0). From the table, we
observe that the OMP algorithm has poor detection capa-
bility, since only 64.5% of the time all the components are
correctly detected. However, OMP requires a low computer
running time since for 8 iterations only 9 nodes are investi-
gated. The FTB-OMP algorithm performance with L = 3,
d = 1, and ξ = 0 is also tabulated. We should note that with
the selected set of parameters, this algorithm is equivalent
to TB-OMP with L = 3. Due to the high computational
complexity, L > 3 and d = 1 cases are not reported. The
TB-OMP algorithm with L = 3 detects all components cor-
rectly at a rate of 93.8%, by searching 9841 nodes. From
the results we can conclude that although a good detection
performance is achieved with TB-OMP, the tree size is very
large. For the case with L = 32, d = 4 only 3391 nodes
are searched on the average and the same detection perfor-
mance as TB-OMP is observed. From the results we can
deduce that a better approximation performance can be ob-
tained by keeping L large at the initial iterations.

In order to observe the effect of correlation threshold-
based pruning we considered L = 32, d = 4 and L = 3,
d = 1 as two distinct parameter sets. The results are given
in Tables 3 and 4, respectively. In Table 3, component de-
tection experiment results are given with various ξ values
for L = 32, d = 4. From the results, we observe that com-
puter running time and average number of nodes decrease
as ξ increases, as expected. For the case where ξ ≥ 0.8,
the algorithm becomes OMP with single branching factor.
The threshold value 0.1 gives a good component detection
performance with ncd-8= 93.1%. The algorithm searches
through only 1902 nodes by taking approximately 0.8 sec-
onds on the average. This gives a reduction of 38% in run-
ning time with respect to the case where ξ = 0. There-
fore, we can conclude that correlation-based pruning re-
duces the tree size and computer running times of the algo-
rithm, and gives comparable detection and approximation
performance.

The effect of correlation based pruning in TB-OMP al-
gorithm for L = 3 and d = 1 case is investigated in Ta-
ble 4. Similarly to Table 3, the TB-OMP algorithm con-
verges to OMP for ξ ≥ 0.8. By changing the correlation
threshold value between 0 and 0.8, a smooth transition is
observed between the TB-OMP and OMP algorithms. As ξ
decreases, the average approximation error decreases, while
the detection performance, the average number of searched
nodes and the average computer running times increase.

5. CONCLUSIONS

In this paper, we proposed a novel efficient tree-search based
orthogonal matching pursuit algorithm for sparse signal rep-
resentations, called FTB-OMP. The algorithmprovides some
design parameters, givingflexibility to choose between higher

approximation performance and lower time complexity. The
efficiency is achieved by using a correlation based pruning
in the search tree, and by changing the number of children
at each tree node.

From the experimental results, we can conclude that FTB-
OMP algorithm with high L values and d > 1 is more effec-
tive than TB-OMP. The novel exponential decaying struc-
ture of the search tree makes the algorithm more compu-
tationally efficient and increases the approximation and de-
tection performance. The threshold parameter ξ can be used
for further computational efficiency.

It is known that solving an overcomplete set of linear
equations is a frequently encountered problem in commu-
nications and signal processing areas. The proposed FTB-
OMP algorithm is a suitable technique to solve problems
where sparse signal representations are required, such as
the angle of arrival detection [6] and channel estimation [7]
problems.
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