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ABSTRACT

We consider the problem of least squares estimation of the
parameters of 2-D exponential signals observed in the pres-
ence of an additive noise field, when the assumed number of
exponentials is incorrect. We consider both the case where the
number of exponential signals is under-estimated, and the case
where the number of exponential signals is over-estimated. In
the case where the number of exponential signals is under-
estimated we prove the almost sure convergence of the least
squares estimates to the parameters of the dominant exponen-
tials. In the case where the number of exponential signals is
over-estimated, the estimated parameter vector obtained by
the least squares estimator contains a sub-vector that converges
almost surely to the correct parameters of the exponentials.

1. INTRODUCTION

In this paper we consider the problem of estimating the parameters
of 2-D exponential signals, observed in the presence of an additive
noise field. This problem is in fact a special case of the more gen-
eral problem of estimating the parameters of a 2-D regular and
homogeneous random field from a single observed realization of
it, Francos et. al. [2]. This modelling and estimation problem
has fundamental theoretical importance, as well as various appli-
cations in texture estimation of images (see, e.g., [3] and the ref-
erences therein) and in wave propagation problems (see, e.g., [9]
and the references therein).

The problem of estimating 2-D exponential signals has been
intensively investigated in the literature (see, e.g., [6] and the ref-
erences therein). Recently, Rao et. al. [8] have studied the asymp-
totic properties of the maximum likelihood estimator (MLE) of
2-D exponential signals observed in noise. In this framework they
also proved the strong consistency of the least squares estimates
(LSE) of the parameters of 2-D exponentials observed in the pres-
ence of complex white circular Gaussian noise. Kundu and Gupta
[7] extended the result of [8] to the case where the observation
noise is not necessarily Gaussian. In both papers, as well as in
most of the previous studies it is assumed that the number of expo-
nentials is known. However this assumption does not always hold
in practice.

In this paper we consider the problem of least squares estima-
tion of the parameters of 2-D exponential signals observed in the
presence of an additive noise field, when the assumed number of
exponentials is incorrect. Let P denote the number of exponential
signals in the observed field and let k denote their assumed num-
ber. In the case where the number of exponential signals is under-

estimated, i.e., k < P , we prove the almost sure convergence of
the least squares estimates to the parameters of the k dominant ex-
ponentials. In the case where the number of exponential signals
is over-estimated, i.e., k > P , we prove the almost sure conver-
gence of the estimates obtained by the least squares estimator to
the parameters of the P exponentials in the observed field. The
extra k−P components assumed to exist, are assigned by the least
squares estimator to the dominant components of the periodogram
of the noise field.

A solution to the problem addressed here, is an essential com-
ponent in the error analysis of the LS algorithm for estimating 2-
D exponentials in noise and in analyzing the performance of the
model order selection criteria [5].

2. NOTATIONS, DEFINITIONS AND ASSUMPTIONS

Let {y(n, m)} be a complex valued field,

y(n, m) =

P�

i=1

a0
i e

j(ω0
i n+υ0

i m) + u(n, m), (1)

where 0 ≤ n ≤ S − 1, 0 ≤ m ≤ T − 1 and for each i, a0
i is

non-zero. Due to physical considerations it is further assumed that
for each i, |a0

i | is bounded.
We make the following assumptions:
Assumption 1: The field {u(n, m)} is an i.i.d. complex

valued zero-mean random field. Let u(n, m) = �(u(n, m)) +
j�(u(n, m)) where uR(n, m) = �(u(n, m)) and uI(n, m) =
�(u(n, m)) are the real and imaginary parts of u(n, m) respec-
tively. Both uR(n, m) and uI(n, m) are zero mean with finite

second order moment, σ2

2
. The real and imaginary parts are inde-

pendent.
Assumption 2: The spatial frequencies (ω0

i , υ0
i ) ∈ (0, 2π)×

(0, 2π), 1 ≤ i ≤ P are pairwise different. In other words, ω0
i �=

ω0
j or υ0

i �= υ0
j , when i �= j.

Define the loss function due to the error of the k-th order re-
gression model

L(a1, . . . , ak, ω1, υ1, . . . , ωk, υk)

=
1

ST

S−1�

n=0

T−1�

m=0

�����y(n, m) −
k�

i=1

aie
j(nωi+mυi)

�����

2

. (2)

Let {Ψi} be a sequence of rectangles such that

Ψi = {(n, m) ∈ Z2 | 0 ≤ n ≤ Si − 1, 0 ≤ m ≤ Ti − 1}.
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Definition 1: The sequence of subsets {Ψi} is said to tend to
infinity (we adopt the notation Ψi → ∞) as i → ∞ if

lim
i→∞

min(Si, Ti) = ∞

and
0 < lim

i→∞
(Si/Ti) < ∞.

To simplify notations, we shall omit in the following the subscript
i. Thus, the notation Ψ(S, T ) → ∞ implies that both S and T
tend to infinity as functions of i, and at roughly the same rate.

Definition 2: Let Θk be a bounded and closed subset of the
3k dimensional space Ck × ((0, 2π) × (0, 2π))k where for any
vector

θk = (a1, . . . , ak, ω1, υ1, . . . , ωk, υk) ∈ Θk

the coordinate ai is non-zero and absolutely bounded for every
1 ≤ i ≤ k while the pairs (ωi, υi) are pairwise different, so that
no two regressors coincide. We shall refer to Θk as the parameter
space.

From the model definition and the above assumptions it is
clear that

θ0
k = (a0

1, . . . , a
0
k, ω0

1 , υ0
1 , . . . , ω0

k, υ0
k) ∈ Θk.

A vector θ̂k ∈ Θk that minimizes L is called the Least Square Es-
timate (LSE). In the case where k = P , the LSE is a strongly con-
sistent estimator of θ0

P (see, e.g., [7] and the references therein).
In the following sections we establish the strong consistency of
this LSE when the number of exponentials is under-estimated, or
over-estimated.

3. CONSISTENCY OF THE LSE FOR AN
UNDER-ESTIMATED MODEL ORDER

Let k denote the assumed number of observed 2-D exponentials,
where k < P . For any δ > 0, define the set ∆δ to be a subset of
the parameter space Θk such that each vector θk ∈ ∆δ is different
from the vector θ0

k by at least δ, at least in one of its coordinates,
i.e.,

∆δ =

�
k�

i=1

Aiδ

�
∪
�

k�
i=1

Wiδ

�
∪
�

k�
i=1

Viδ

�
, (3)

where

Aiδ =
�
θk ∈ Θk : |ai − a0

i | ≥ δ; δ > 0
�

, (4)

Wiδ =
�
θk ∈ Θk : |ωi − ω0

i | ≥ δ; δ > 0
�

, (5)

Viδ =
�
θk ∈ Θk : |υi − υ0

i | ≥ δ; δ > 0
�

. (6)

To prove the main result of this section we shall need an addi-
tional assumption and the following lemmas:

Assumption 3: For convenience, and without loss of gener-
ality, we assume that the exponentials are indexed according to a
descending order of their amplitudes, i.e.,

|a0
1| ≥ |a0

2| ≥ . . . |a0
k| > |a0

k+1| . . . ≥ |a0
P | > 0 , (7)

where we assume that for a given k, |a0
k| > |a0

k+1| to avoid triv-
ial ambiguities resulting from the case where the k-th dominant
component is not unique.

Lemma 1

lim inf
Ψ(S,T )→∞

inf
θk∈∆δ

�L(θk) − L(θ0
k)
�

> 0 a.s. (8)

See [6] for the proof.

Lemma 2 Let {xn, n ≥ 1} be a sequence of random variables.
Then

Pr{xn ≤ 0 i.o.} ≤ Pr{lim inf
n→∞

xn ≤ 0}, (9)

where the abbreviation i.o. stands for infinitely often.
See [6] for the proof.
The next theorem establishes the strong consistency of the

least squares estimator in the case where the number of the re-
gressors is lower than the actual number of exponentials.

Theorem 1 Let Assumptions 1-3 be satisfied. Then, the k-regressors
parameter vector

θ̂k = (â1, . . . , âk, ω̂1, υ̂1, . . . , ω̂k, υ̂k),

that minimizes (2) is a strongly consistent estimator of

θ0
k = (a0

1, . . . , a
0
k, ω0

1 , υ0
1 , . . . , ω0

k, υ0
k),

as Ψ(S, T ) → ∞. That is,

θ̂k → θ0
k, a.s. as Ψ(S, T ) → ∞.

Proof: The proof follows an argument proposed by Wu [10],
Lemma 1. Let θ̂k = (â1, . . . , âk, ω̂1, υ̂1, . . . , ω̂k, υ̂k) be a pa-
rameter vector that minimizes (2). Assume that the proposition
θ̂k → θ0

k a.s. as Ψ(S, T ) → ∞ is not true. Then, there exists
some δ > 0, such that ([1], Theorem 4.2.2),

Pr(θ̂k ∈ ∆δ i.o.) > 0. (10)

This inequality together with the definition of θ̂k as a vector that
minimizes L implies

Pr

�
inf

θk∈∆δ

�L(θk) − L(θ0
k)
� ≤ 0 i.o.

�
> 0. (11)

Using Lemma 2 we obtain

Pr

�
lim inf

Ψ(S,T )→∞
inf

θk∈∆δ

�L(θk) − L(θ0
k)
� ≤ 0

�

≥ Pr

�
inf

θk∈∆δ

�L(θk) − L(θ0
k)
� ≤ 0 i.o.

�
> 0, (12)

which contradicts (8). Hence,

θ̂k → θ0
k a.s. as Ψ(S, T ) → ∞. (13)
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4. CONSISTENCY OF THE LSE FOR AN
OVER-ESTIMATED MODEL ORDER

Let k denote the assumed number of observed 2-D exponentials,
where k > P . Without loss of generality, we can assume that
k = P + 1, (as the proof for k ≥ P + 1 follows immediately by
repeating the same arguments). Let the periodogram of the field
{u(n, m)} be given by

Iu(ω, υ) =
1

ST

�����
S−1�
n=0

T−1�
m=0

u(n, m)e−j(nω+mυ)

�����
2

. (14)

The parameter spaces ΘP , ΘP+1 are defined as in Definition 2.
To prove the main result of this section we need an additional

assumption:
Assumption 4: The real and imaginary components of u(n, m)

are such that

E[uR(0, 0)2 log |uR(0, 0)|] < ∞

and
E[uI(0, 0)2 log |uI(0, 0)|] < ∞.

(For example, a white Gaussian noise field satisfies this assump-
tion).

Theorem 2 Let Assumptions 1, 2, and 4 be satisfied. Then, the
parameter vector

θ̂P+1 = (â1, . . . , âP , âP+1, ω̂1, υ̂1, . . .

. . . , ω̂P , υ̂P , ω̂P+1, υ̂P+1) ∈ ΘP+1,

that minimizes (2) with k = P +1 regressors as Ψ(S, T ) → ∞ is
composed of the vector

θ̂P = (â1, . . . , âP , ω̂1, υ̂1, . . . , ω̂P , υ̂P ),

which is a strongly consistent estimator of

θ0
P = (a0

1, . . . , a
0
P , ω0

1 , υ0
1 , . . . , ω0

P , υ0
P ),

as Ψ(S, T ) → ∞; of the pair of spatial frequencies (ω̂P+1, υ̂P+1)
that maximizes the periodogram of the observed realization of the
field {u(n, m)}, i.e.,

(ω̂P+1, υ̂P+1) = arg max
(ω,υ)∈(0,2π)2

Iu(ω, υ) (15)

and of the element âP+1 that satisfies

|âP+1|2 =
1

ST
Iu(ω̂P+1, υ̂P+1) . (16)

Proof: Let

θP+1 = (a1, . . . , aP , aP+1, ω1, υ1, . . . , ωP , υP , ωP+1, υP+1),

be some vector in the parameter space ΘP+1. The LS function
with P + 1 regressors will be denoted LP+1 and the LS function

with P regressors will be denoted LP . We have,

LP+1(θP+1) = 1
ST

S−1�
n=0

T−1�
m=0

����y(n, m) −
P+1�
i=1

aie
j(nωi+mυi)

����
2

= 1
ST

S−1�
n=0

T−1�
m=0

����y(n, m) −
P�

i=1

aie
j(nωi+mυi)

����
2

+ 1
ST

S−1�
n=0

T−1�
m=0

���aP+1e
j(nωP+1+mυP+1)

���2

−2�
�

1
ST

S−1�
n=0

T−1�
m=0

�
y(n, m) −

P�
i=1

aie
j(nωi+mυi)

�
·

·
�
aP+1e

j(nωP+1+mυP+1)
�∗�

= H1(θP+1) + H2(θP+1) + H3(θP+1).
(17)

where,

H1(θP+1) = LP (a1, . . . , aP , ω1, υ1, . . . , ωP , υP )

= LP (θP ), (18)

where, θP = (a1, . . . , aP , ω1, υ1, . . . , ωP , υP ) ∈ ΘP and,

H2(θP+1) = |aP+1|2

−2�
�

1

ST

S−1�
n=0

T−1�
m=0

u(n, m)
�
aP+1e

j(nωP+1+mυP+1)
�∗�

,(19)

H3(θP+1) = −2�
�

1

ST

S−1�
n=0

T−1�
m=0

� P�
i=1

a0
i e

j(nω0
i +mυ0

i )

−
P�

i=1

aie
j(nωi+mυi)

��
aP+1e

j(nωP+1+mυP+1)

�∗�
. (20)

Let θ̂P = (â1, . . . , âP , ω̂1, υ̂1, . . . , ω̂P , υ̂P ) be a vector in
ΘP that minimizes H1(θP+1) = LP (θP ). From [7] (or using
Theorem 1 in the previous section),

θ̂P → θ0
P a.s. as Ψ(S, T ) → ∞. (21)

The function H2 is a function of aP+1, ωP+1, υP+1 only.
Evaluating the partial derivatives of H2 with respect to these vari-
ables, it is easy to verify that the extremum points of H2 are also
the extremum points of the periodogram of the realization of the
noise field. Moreover, let ae, ωe, υe denote an extremum point of
H2. Then at this point

H2(a
e, ωe, υe) = −Iu(ωe, υe)

ST
. (22)

Hence, the minimal value of H2 is obtained at the coordinates
aP+1, ωP+1, υP+1 where the periodogram of {u(n, m)} is maxi-
mal. Let âP+1, ω̂P+1, υ̂P+1 denote the coordinates that minimize
H2. Then we have

(ω̂P+1, υ̂P+1) = arg min
(ω,υ)∈(0,2π)2

H2(aP+1, ωP+1, υP+1)

= arg max
(ω,υ)∈(0,2π)2

Iu(ω, υ), (23)

and

âP+1 =
1

ST

S−1�
n=0

T−1�
m=0

u(n, m)e−j(nω̂P+1+mυ̂P+1). (24)
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By Assumption 4 and Theorem 2.2, [4], we have

sup
ω,υ

Iu(ω, υ) = O(log ST ). (25)

Therefore,

H2(âP+1, ω̂P+1, υ̂P+1) = O

�
log ST

ST

�
. (26)

Let θ̂P+1 ∈ ΘP+1 be the vector composed of the elements
of the vector θ̂P ∈ ΘP and of âP+1, ω̂P+1, υ̂P+1, defined above,
i.e.,

θ̂P+1 = (â1, . . . , âP , âP+1, ω̂1, υ̂1, . . . , ω̂P , υ̂P , ω̂P+1, υ̂P+1).

We need to verify that this vector minimizesLP+1(θP+1) on ΘP+1

as Ψ(S, T ) → ∞ .
Recall that for ω ∈ (0, 2π)

N−1�
n=0

exp(jωn) = O(1) . (27)

Hence, as N → ∞

1

log N

N−1�
n=0

exp(jωn) = o(1) (28)

and consequently

1

N

N−1�
n=0

exp(jωn) = o

�
log N

N

�
(29)

Next, we evaluate H3. Consider the first term in (20). By (29) and
unless there exists some i, 1 ≤ i ≤ P , such that (ωP+1, υP+1) =
(ω0

i , υ0
i ), we have as Ψ(S, T ) → ∞,

1

ST

S−1�
n=0

T−1�
m=0

P�
i=1

a0
i e

j(nω0
i +mυ0

i )
�
aP+1e

j(nωP+1+mυP+1)
�∗

= o

�
log ST

ST

�
, (30)

for any set of values aP+1, ωP+1, υP+1 may assume.
Assume now that there exists some i, 1 ≤ i ≤ P , such

that (ωP+1, υP+1) = (ω0
i , υ0

i ). Since by assumption there are
no two different regressors with identical spatial frequencies, it
follows that one of the estimated frequencies (ωi, υi) is due to
noise contribution. As indexing of the components is arbitrary,
by interchanging the roles of (ωP+1, υP+1) and (ωi, υi), and re-
peating the above argument we conclude that this term has the
same order as in (30). Similarly, for the second term in (20):
By (29) and unless there exists some i, 1 ≤ i ≤ P , such that
(ωP+1, υP+1) = (ωi, υi), we have as Ψ(S, T ) → ∞,

1

ST

S−1�
n=0

T−1�
m=0

P�
i=1

aie
j(nωi+mυi)

�
aP+1e

j(nωP+1+mυP+1)
�∗

= o

�
log ST

ST

�
. (31)

However such i for which (ωP+1, υP+1) = (ωi, υi) cannot exist,
as this amounts to reducing the number of regressors from P + 1

to P , as two of them coincide. Hence, for any θP+1 ∈ ΘP+1 as
Ψ(S, T ) → ∞

H3(θP+1) = o

�
log ST

ST

�
. (32)

On the other hand, the strong consistency (21) of the LSE under the
correct model order assumption implies that as Ψ(S, T ) → ∞ the
minimal value of LP (θP ) = σ2 a.s., while from (26) we have for
the minimal value of H2 that H2(θP+1) = O

�
log ST

ST

�
. Hence,

the value of H3(θP+1) at any point in Θp+1 is negligible even rel-
ative to the values LP (θP ) and H2(θP+1) assume at their respec-
tive minimum points. Therefore, evaluating (17) as Ψ(S, T ) → ∞
we have

LP+1(θP+1)

= LP (θP ) + H2(aP+1, ωP+1, υP+1) + H3(θP+1)

= LP (θP ) + H2(aP+1, ωP+1, υP+1) + o

�
log ST

ST

�
. (33)

Since LP (θP ) is a function of the parameter vector θP and is
independent of aP+1, ωP+1, υP+1, while H2 is a function of
aP+1, ωP+1, υP+1 and is independent of θP , the problem of mini-
mizing LP+1(θP+1) becomes separable as Ψ(S, T ) → ∞. Thus
minimizing (33) is equivalent to separately minimizing LP (θP )
and H2(aP+1, ωP+1, υP+1) as Ψ(S, T ) → ∞. Using the fore-
going conclusions, the theorem follows.
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