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ABSTRACT

We consider the problem of least squares estimation of the
parameters of 2-D exponential signals observed in the pres-
ence of an additive noise field, when the assumed number of
exponentials is incorrect. We consider both the case where the
number of exponential signals is under-estimated, and the case
where the number of exponential signals is over-estimated. In
the case where the number of exponential signals is under-
estimated we prove the almost sure convergence of the least
squares estimates to the parameters of the dominant exponen-
tials. In the case where the number of exponential signals is
over-estimated, the estimated parameter vector obtained by
the least squares estimator contains a sub-vector that converges
almost surely to the correct parameters of the exponentials.

1. INTRODUCTION

In this paper we consider the problem of estimating the parameters
of 2-D exponential signals, observed in the presence of an additive
noise field. This problem is in fact a special case of the more gen-
eral problem of estimating the parameters of a 2-D regular and
homogeneous random field from a single observed realization of
it, Francos et. al. [2]. This modelling and estimation problem
has fundamental theoretical importance, as well as various appli-
cations in texture estimation of images (see, e.g., [3] and the ref-
erences therein) and in wave propagation problems (see, e.g., [9]
and the references therein).

The problem of estimating 2-D exponential signals has been
intensively investigated in the literature (see, e.g., [6] and the ref-
erences therein). Recently, Rao ez. al. [8] have studied the asymp-
totic properties of the maximum likelihood estimator (MLE) of
2-D exponential signals observed in noise. In this framework they
also proved the strong consistency of the least squares estimates
(LSE) of the parameters of 2-D exponentials observed in the pres-
ence of complex white circular Gaussian noise. Kundu and Gupta
[7] extended the result of [8] to the case where the observation
noise is not necessarily Gaussian. In both papers, as well as in
most of the previous studies it is assumed that the number of expo-
nentials is known. However this assumption does not always hold
in practice.

In this paper we consider the problem of least squares estima-
tion of the parameters of 2-D exponential signals observed in the
presence of an additive noise field, when the assumed number of
exponentials is incorrect. Let P denote the number of exponential
signals in the observed field and let k& denote their assumed num-
ber. In the case where the number of exponential signals is under-
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estimated, i.e., k < P, we prove the almost sure convergence of
the least squares estimates to the parameters of the £ dominant ex-
ponentials. In the case where the number of exponential signals
is over-estimated, i.e., k > P, we prove the almost sure conver-
gence of the estimates obtained by the least squares estimator to
the parameters of the P exponentials in the observed field. The
extra k — P components assumed to exist, are assigned by the least
squares estimator to the dominant components of the periodogram
of the noise field.

A solution to the problem addressed here, is an essential com-
ponent in the error analysis of the LS algorithm for estimating 2-
D exponentials in noise and in analyzing the performance of the
model order selection criteria [5].

2. NOTATIONS, DEFINITIONS AND ASSUMPTIONS

Let {y(n,m)} be a complex valued field,

P
y(n,m) =3 ald I fu(n,m), (1

=1

where 0 < n < S—1,0 < m < T — 1 and for each i, af is
non-zero. Due to physical considerations it is further assumed that
for each 4, |a?| is bounded.

We make the following assumptions:

Assumption 1: The field {u(n,m)} is an i.i.d. complex
valued zero-mean random field. Let u(n,m) = R(u(n,m)) +
7S (u(n, m)) where ur(n,m) = R(u(n,m)) and us(n,m) =
S(u(n,m)) are the real and imaginary parts of u(n,m) respec-
tively. Both ur(n,m) and u;(n,m) are zero mean with finite
second order moment, %-. The real and imaginary parts are inde-
pendent.

Assumption 2: The spatial frequencies (w?, v) € (0, 27) x
(0,27), 1 < i < P are pairwise different. In other words, w #
w? or v # ’U?, when ¢ # j.

Define the loss function due to the error of the k-th order re-
gression model
L(at, ..., ak,w1,V1,...,Wk, Vk)
5—1

1 -1l k 2
- ST Z Z y(n,m) — Zaiej(““’ﬁmvi) )
n=0m=0 i=1

Let {¥;} be a sequence of rectangles such that

U, ={(n,m) e 2>|0<n<S8—-1,0<m<T;—1}.
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Definition 1: The sequence of subsets {W; } is said to tend to
infinity (we adopt the notation ¥; — 00) as ¢ — oo if
lim min(S;, T3) = oo

and
0 < lim (S;/T;) < oo.

To simplify notations, we shall omit in the following the subscript
1. Thus, the notation ¥(S,T) — oo implies that both S and T'
tend to infinity as functions of ¢, and at roughly the same rate.

Definition 2: Let ©;, be a bounded and closed subset of the
3k dimensional space C* x ((0,27) x (0,27))* where for any
vector

0, = (al,...,ak,wl,vl, . ,wk,vk) € Oy

the coordinate a; is non-zero and absolutely bounded for every
1 < i < k while the pairs (w;, v;) are pairwise different, so that
no two regressors coincide. We shall refer to ©y, as the parameter
space.

From the model definition and the above assumptions it is
clear that

0 0 0 0o ,0
ek' = (ala"'7akaw17vlv--

L wh,Up) € O,

A vector ), € O, that minimizes £ is called the Least Square Es-
timate (LSE). In the case where k = P, the LSE is a strongly con-
sistent estimator of 6% (see, e.g., [7] and the references therein).
In the following sections we establish the strong consistency of
this LSE when the number of exponentials is under-estimated, or
over-estimated.

3. CONSISTENCY OF THE LSE FOR AN
UNDER-ESTIMATED MODEL ORDER

Let k denote the assumed number of observed 2-D exponentials,
where k < P. For any § > 0, define the set A to be a subset of
the parameter space O such that each vector 0, € As is different
from the vector 69 by at least d, at least in one of its coordinates,
ie.,

e[ o o] o

where
Ais={00 €Oy : |ai—a]| >85>0}, 4)
Wis = {0k €Or: |wi —w)| >85>0}, 5)
Vis={0r €Or: [vi—v]| >35;6>0} . (©)

To prove the main result of this section we shall need an addi-
tional assumption and the following lemmas:

Assumption 3: For convenience, and without loss of gener-
ality, we assume that the exponentials are indexed according to a
descending order of their amplitudes, i.e.,

\a?\2|a3|2...\a2|>|a2+1|...2|a%\>0, @)

where we assume that for a given k, |af| > |aj1]| to avoid triv-
ial ambiguities resulting from the case where the k-th dominant
component is not unique.

Lemma 1

. . 0
\I/(hsn%;rlfm ekuelgg (L(6k) — L(6r)) >0 a.s. (8)

See [6] for the proof.

Lemma 2 Let {xn,n > 1} be a sequence of random variables.
Then

Pr{z, <0%.0.} < Pr{liminfz, <0}, )

where the abbreviation i.o. stands for infinitely often.

See [6] for the proof.

The next theorem establishes the strong consistency of the
least squares estimator in the case where the number of the re-
gressors is lower than the actual number of exponentials.

Theorem 1 Let Assumptions 1-3 be satisfied. Then, the k-regressors
parameter vector

Ok = (a1,..., Gk, 01,01, .., Wk, Ok ),
that minimizes (2) is a strongly consistent estimator of
92 = (a?7 tet 7(127&)?77.}?7 et 70‘}27/1)2)7

as U(S,T) — oo. That is,
O — 02, a.s. as (S, T) — oo.

Proof: The proof follows an argument proposed by Wu [10],
Lemma 1. Let 0, = (Ga,...,ak,o1,01,...,0k, Ok) be a pa-
rameter vector that minimizes (2). Assume that the proposition
Or, — 6% a.s. as V(S,T) — oo is not true. Then, there exists
some ¢ > 0, such that ([1], Theorem 4.2.2),

Pr(0 € As i.0.) > 0. (10)

This inequality together with the definition of 0y as a vector that
minimizes £ implies

Pr( inf (L(0x) — L(6)) <0 zo) >0,  (11)

0pEAs

Using Lemma 2 we obtain

pr( Jimint_int (£(04) - £0) <0)
> Pr (ekiggé (L(6x) — L(67)) <0 zo) >0, (12)
which contradicts (8). Hence,
0, — 02 a.s. as (S, T) — oo. (13)
|
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4. CONSISTENCY OF THE LSE FOR AN
OVER-ESTIMATED MODEL ORDER

Let k denote the assumed number of observed 2-D exponentials,
where k£ > P. Without loss of generality, we can assume that
k = P + 1, (as the proof for £k > P + 1 follows immediately by
repeating the same arguments). Let the periodogram of the field
{u(n, m)} be given by

S—1T-1 2

Tu(w,v) = 5‘17 3% w(n, m)e It

n=0 m=0

(14)

The parameter spaces © p, © p41 are defined as in Definition 2.

To prove the main result of this section we need an additional
assumption:

Assumption 4: The real and imaginary components of u(n, m)
are such that

Elur(0,0)* log [ur(0,0)[] < oo
and
Elur(0,0)* log |ur(0,0)[] < oo
(For example, a white Gaussian noise field satisfies this assump-

tion).

Theorem 2 Let Assumptions 1, 2, and 4 be satisfied. Then, the
parameter vector

Op+1 = (&1,...,&P,€LP+1,&J1,@1,...

WP, Op,Wpt1,0p41) € Opya,

that minimizes (2) with k = P + 1 regressors as U(S,T) — oo is
composed of the vector

013:(&1,...,dp,if)l,@h...,@p,ﬁp),
which is a strongly consistent estimator of
0% — (a° 0,0 0 0 .0
P_(al,'~~7a’P7w17U17"'7WP,UP)7

as ¥(S,T) — oo; of the pair of spatial frequencies (Op+1,0p+1)
that maximizes the periodogram of the observed realization of the
field {u(n,m)}, ie.,

argmax Iy (w,v) (15)
(w,v)€(0,2m)2

(@p+1,0p41) =
and of the element G py1 that satisfies

1 . .
= o lu(@py1,0pP41) - (16)

A 2
lapt1] T

Proof: Let

9P+1 = (a1, ..., ap,ap41,W1,V1,...,Wp,Up,WP+1, UP+1),
be some vector in the parameter space ©p,1. The LS function

with P + 1 regressors will be denoted £p 41 and the LS function

with P regressors will be denoted £p. We have,

P41 ] 2
Z aiea(nwﬁmvl)
i=1

Lpi1(0p+1) = 57

S—1T-1

S—1T-1
PP
n=0 m=0

y(n7 m) -

y(m m) _ E aiej(nw+mvi)

2

S—1T-1
+S Z Z ap+lej(an+1+mvP+1)
T

n=0m=0
-3 aiej(”w”m“f‘))-
=1

{2 S (vlnm)

n=0 m=0

. *
. (aP+1eJ(an+1+mvP+1))

= Hi1(0p4+1) + H2(0p+1) + H3(0p+1).

an
where,
Hi(0py1) = Lp(a1,...,ap,w1,v1,...,wp,Vp)
= Lp(Op), (18)
where, p = (a1,...,ap,w1,v1,...,wp,vp) € Op and,

S—1T-1

_ 1 0 ](nw +mu )
Hy(0p+1) = _23%{7 >y (Za
P *
_ Zaiej(nwﬂrmva)) (aP+1eJ("WP+1+mUP+1)) } (20)
i=1

Let 0p = (a1,...,ap,o1,01,...,0p,0p) be a vector in

Op that minimizes H1(0p4+1) = Lp(0p). From [7] (or using
Theorem 1 in the previous section),
Op — 0% a.s. as W(S,T) — oco. 21

The function H» is a function of ap41,wp+1,vp+1 only.
Evaluating the partial derivatives of H> with respect to these vari-
ables, it is easy to verify that the extremum points of H are also
the extremum points of the periodogram of the realization of the
noise field. Moreover, let a®, w®, v denote an extremum point of
H>. Then at this point

I, (W, v®)
ST

Hence, the minimal value of H2 is obtained at the coordinates
api1,wp41,vpy1 where the periodogram of {u(n,m)} is maxi-
mal. Let ap+1,0p+1,Up41 denote the coordinates that minimize
Hs. Then we have

Hy(a®,w®v%) = — (22)

argmin  Hz(ap+1,wp+1,VUp41)
(w,v)€(0,2m)2

(Wpy1,0p41) =

= argmax I, (w,v), (23)
(w,v)€(0,27)2
and
=
ps = —i(n&py1tmopi1) 24
ap+1 ST%%u(n,m)e (24)
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By Assumption 4 and Theorem 2.2, [4], we have

sup I, (w,v) = O(log ST). (25)
Therefore,
N R N log ST
Ha(apt1,0p+1,0p41) = O ( OET ) . (26)

Let ép.H € Opy1 be the vector composed of the elements
of the vector 0p € ©p and of Gp41,wp+1,0p+1, defined above,
ie.,

Opsr = (@1, ..., ap,api1, 01,01, ..., 0P, 0P, @p i1, 0pi1).

We need to verify that this vector minimizes Lp1(0p+1) on O p41
as U(S,T) — oo
Recall that for w € (0, 27)

N-1
> exp(jwn) = O(1). @7
n=0

Hence, as N — oo

N-1
1 .
Tog N nE:O exp(jwn) = o(1) (28)
and consequently
N-1
1 . _ (logN
N nE:() exp(jwn) = o( N ) (29)

Next, we evaluate H3. Consider the first term in (20). By (29) and
unless there exists some ¢, 1 < ¢ < P, such that (wp+1,vp41) =
(W), v?), we have as ¥(S,T) — oo,

S—-1T-1 P .
SL Z Z Zaer(7Lw?+7n’u?) (ap+lej(nwp+1+mvp+1))
T 1
n=0 m=0 i=1
log ST
:o( gT ) (30)

for any set of values ap4+1,wp+1,vVp+1 May assume.

Assume now that there exists some ¢, 1 < 7 < P, such
that (wpy1,vp+1) = (w?,vY). Since by assumption there are
no two different regressors with identical spatial frequencies, it
follows that one of the estimated frequencies (w;,v;) is due to
noise contribution. As indexing of the components is arbitrary,
by interchanging the roles of (wp4+1,vp+1) and (w;, v;), and re-
peating the above argument we conclude that this term has the
same order as in (30). Similarly, for the second term in (20):
By (29) and unless there exists some ¢, 1 < ¢ < P, such that
(wp+1,vp+1) = (wi, v;), we have as ¥(S,T) — oo,

S—-1T-1 P

% Z Z Zaiej("“”m“” (ap+lej(nwp+1+mvp+1>>*
n=0m=0 i=1
log ST
=0 ( ET ) . G1)

However such i for which (wp41,vp+1) = (wi, v;) cannot exist,
as this amounts to reducing the number of regressors from P + 1

to P, as two of them coincide. Hence, for any p11 € Op1 as
U (S, T) — oo

logST) . 32)

H3(9p+1) =o0 ( ST

On the other hand, the strong consistency (21) of the LSE under the
correct model order assumption implies that as W(.S,T") — oo the
minimal value of Lp(0p) = o a.s., while from (26) we have for
the minimal value of Hy that Ha(0p+1) = O (*227). Hence,
the value of Hs(6p+1) at any point in ©,41 is negligible even rel-
ative to the values Lp(6p) and Ha(6p1) assume at their respec-
tive minimum points. Therefore, evaluating (17) as U (S, T) — oo
we have

Lpi1(0p41)
= Lp(0p) + H2(ap+1,wp+1,vp+1) + H3(0p+1)

log ST
= Lp(0p) + H2(ap+1,wp+1,vp+1) + 0 < OE'T ) . (33)

Since Lp(0p) is a function of the parameter vector fp and is
independent of ap+1, wp+1, vp+1, While Ha is a function of
ap+1,wp+1,vp+1 andis independent of 6 p, the problem of mini-
mizing Lp+1(0p+1) becomes separable as V(S,T) — oo. Thus
minimizing (33) is equivalent to separately minimizing £p(6p)
and Ha(apy1,wp4+1,vpt1) as ¥(S,T) — co. Using the fore-
going conclusions, the theorem follows. |
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