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ABSTRACT

In this paper a kernel-based non-linear spectral matched filter is
introduced for target detection in hyperspectral imagery. The pro-
posed spectral matched filter is defined in a kernel feature space
which is equivalent to a non-linear matched filter in the original
input space. This non-linear spectral matched filter is based on the
notion that performing matched filtering in the high dimensional
feature space increases the separability of spectral data mainly be-
cause it exploits the higher order correlation between the spectral
bands. It is also shown that the non-linear spectral matched filter
can easily be implemented in terms of kernel functions using the
so called kernel trick property of the Mercer kernels. The kernel
version of the non-linear spectral matched filter is implemented
and simulation results on hyperspectral imagery are shown to out-
perform the linear version.

1. INTRODUCTION

Target detection using linear matched filtering is a well known ap-
proach in detecting objects of interest in hyperspectral imagery
[1]. However, the linear matched filter does not exploit the higher
order statistical correlation between the spectral bands since it is
only based on the second order statistics. The motivation behind
designing the non-linear matched filter is to incorporate the higher
order statistical correlation between the spectral bands in the de-
sign of the matched filter in order to improve the performance of
the conventional linear matched filter.

Non-linear spectral matched filters can easily be developed by
assuming a non-linear model where the input data is first converted
into a high dimensional feature space by a certain non-linear map-
ping. However, to implement such a non-linear match filter in the
feature space may not be computationally possible due to the high
dimensionality of the feature space. Recently, using the ideas of
kernel-based learning algorithms it has been shown in [2, 3, 4] that
a number of linear algorithms can easily be extended to non-linear
versions by implementing them in terms of kernel functions, thus
avoiding the implementation of the algorithm in the feature space.

In this paper, we introduce a non-linear spectral matched fil-
ter in a kernel feature space and its corresponding kernel version.
To convert a linear matched filter into a non-linear version, the
matched filter problem is first formulated in a particular feature
space by using a non-linear mapping which is associated with a
kernel function. The matched filter expression in that feature space
is then rewritten in terms of dot products and by using the so called
kernel trick (see Eq. (8)), it is converted in terms of kernel func-
tions. We refer to this process as kernelizing the expression for the
non-linear matched filter and the resulting match filter is called the
kernel spectral matched filter.
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This paper is organized as follows. Section 2 introduces the
linear matched filter and the idea of kernel trick when using Mer-
cer kernels is described in Section 3. In Section 4, non-linear
matched filter is described which is reformulated in terms of the
kernel function to obtain the kernel matched filter. Performance of
the kernel matched filter on hyperspectral imagery is provided in
Section 5 and conclusions are given in Section 6.

2. LINEAR MATCHED FILTER

Let the input spectral signal x be x = [z(1),z(2),...,z(J)]T
consisting of J spectral bands. We can model each spectral obser-
vation as a linear combination of the target spectral signature and
noise

X = as + n, D

where a is an attenuation constant (target abundance measure)
when a = 0 no target is present and when a > 0 target is present,
s = [s(1), 5(2),...,5(J)]¥ contains the spectral signature of the
target and n contains the added background clutter noise.

We can design a linear matched filter w = [w(1), w(2), ...
,w(J)]T such that the desired target signal s is passed through
while the average filter output energy is minimized. Let us define
X to be a J x N matrix of the N mean-removed (centered) inde-
pendent reference pixels obtained from the input image. Let each
centered observation spectral pixel to be represented as a column
in the sample matrix X = [x1 X2 ... xn]. The output of the
filter for the input x; is given by

y(x;) = wai = xiTw. 2)

The average output power of the filter for the reference data X is
given by

N N

1 1

NZy(xi)z =WT(N inx;.r)w= wiCw, (3
i=1 i=1

where C is the covariance matrix of the reference data. The design

of the matched filter w is equivalent to a constrained least squares

minimization problem given by

min{w” Cw} subjectto s”w = 1. )

The solution to this quadratic minimization problem is known as
the minimum variance method in the adaptive array processing lit-
erature [5, 6], which is also called the constrained energy mini-
mization (CEM) filter [7] in the hyperspectral literature. The solu-
tion for the filter is given by
-1
we S 8 )

sTC—1s’
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The covariance matrix C is usually estimated from the input image
('the estimated covariance matrix for the mean-removed reference
data C = %XXT). The output of the linear matched filter for a
test input r, given the estimated covariance matrix, is given by

TA—1

T s C'r
' =W r—= ———. 6
y(r) sTC-1s ©

3. KERNEL METHODS AND KERNEL TRICK

Suppose the input hyperspectral data is represented by the data
space (X C RY) and F be a feature space associated with X by a
nonlinear mapping function ®

®:X > Fx— ®(x), @)

where x is an input vector in X which is mapped into a potentially
much higher — (could be infinite) — dimensional feature space.

Implementing any linear algorithm (i.e., matched filter) in the
feature space is equivalent to performing a nonlinear version of
that algorithm (i.e., non-linear matched filter) in the original data
space. Due to the high dimensionality of feature space F it is com-
putationally not feasible to implement the algorithm in the feature
space. The kernel trick given by (8) is then used to implicitly com-
pute the dot products in F without mapping the input vectors into
JF; therefore, in the kernel methods, the mapping & does not need
to be identified [8]. The kernel representation for the dot products
in F is expressed as

k(xi,x;) =< @(xi), 2(x;) >= &(x:) - 2(x;) (®)

where k is a kernel function in terms of the original data. There
are a large number of kernels called Mercer kernels that have the
kernel trick property, see [8] for detailed information about the
properties of different kernels and kernel-based learning.

4. NON-LINEAR MATCHED FILTER AND KERNEL
MATCHED FILTER

In this section, we show how to extend the linear matched filter
to a non-linear version. Formulation of the matched filter in the
feature space and its kernelization are also shown.

4.1. Introduction to Non-linear Matched filter

Consider the linear model of the input data in a kernel feature space
which is equivalent to a non-linear model in the input space

®(x) = as®(s) + na, ©)

where @ is the non-linear mapping that implicitly maps the input
data into a kernel feature space, as is an attenuation constant (tar-
get abundance measure), the high dimensional vector ®(s) con-
tains the spectral signature of the target in the feature space, and
vector ng contains the added noise in the feature space.
Using the constrained least squares approach that was explained

in the previous section it can easily be shown that the equivalent
matched filter wo in the feature space is given by

~N—1
Wo = Cs 2(s)

=——°e "V 10
®(s)TC3' @(s) (10

where € is the estimated covariance of pixels in the feature space.
The estimated covariance is given by Cq> = XoXo?! assum-
ing the sample mean has already been removed from each sample
(centered), where Xo=[®(x1) ®(x2) ... ®(xn)] is a full rank
matrix whose columns are the mapped input reference data in the
feature space.

The matched filter in the feature space (10) is equivalent to a
non-linear matched filter in the input space and its output for the
input ®(r) is given by

2(s)"Cy 2(r)

y(B(e) = wh(r) = L o EE

11

Due to the high dimensionality of the feature space the ex-
pression (11) is not tractable. Therefore, it can not be directly
implemented in the feature space. The expression (11) needs to be
converted in terms of the kernel functions.

4.2. Kernel Matched Filter

In this subsection we show how to kernelize the matched filter in
the feature space. The estimated background covariance matrix
can be represented by its eigenvector decomposition or so called
spectral decomposition given by

Cos = VoAVaT, (12)

where A is a diagonal matrix consisting of the eigenvalues and
Vs is a matrix whose columns are the eigenvectors of Co in the
feature space. The eigenvector matrix is represented by

Vo = [vclp vl ... vg], (13)

where N is the maximum number of eigenvectors with non-zero
eigenvalue.

The pseudoinverse of the estimated background covariance
matrix can also be written in terms of its eigenvector decompo-
sition as

S = VoA VLT (14)

Each eigenvector vé, in the feature space, as shown in Appendix
I, can be expressed as a linear combination of the input reference
vectors in the feature space as shown by

N
vh =Y BlB(xi) = X, (15)
i=1
where 89 = (87,5, . ..
in the feature space

, ﬂfv)T and for all the eigenvectors Vo

Vo = XoabB, (16)

where B = [B! 8% ... BY] are the eigenvectors of the kernel
matrix (Gram) K (see (21)) normalized by the square root of their
corresponding eigenvalues, as shown in Appendix I. Substituting
(16) into (14) yields

% = XoBA ' BTXE. (17
Inserting pseudoinverse (17) into (11) it can be rewritten as

®(s)" X BA 1 BTXLd(r)
®(r)) = . 18
y(2(x)) ®(s)" XoBA-1BTXLd(s) {19
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The dot product term @(S)TX<1> in the feature space can be rep-
resented in terms of the kernel function which is referred to as its
empirical kernel map [8]

@(S)TX<1> = (k(x1,s), k(x2,s),...,k(xn,s)) (19)
=K (X,s) = K.
Similarly ,
<I>(r)TX<1> = (k(x1,r),k(x2,r),...,k(xN,T)) (20)
=K' (X,r) =K.

Also using the properties of the Kernel Principal Component Anal-
ysis (PCA) as shown in Appendix I, we have the relationship

—1_ 1T
K _NBA BT, (1)

where K = K(X, X) = (K);; is an N x N kernel matrix whose
entries are the dot products k(x;,x;) =< ®(x;), ®(x;) >. Sub-
stituting (19), (20), and (21) into (18) the kernelized version of the
matched filter is given by

K(X,s)"K'K(X,r) KIK 'K,
K(X,s)TK-'K(X,s) KIK 'K,

y(Kr) = (22)

which can now be implemented with no knowledge of the mapping
function &.

Note that the kernel matrix K and the empirical kernel maps
KST and Kf in (22) need to be properly centered because the sam-
ple mean cannot be directly removed in the feature space due to
the high dimensionality of F. The resulting centered K is shown
in[8] tobe givenby K = (K—1yK—K1y+15K1y), where
the elements of the N x N matrix (1n);; = 1/N. The centered
kernel matched filter output for (22) is now given by

. . KK 'K,
y(Kr) = KTK K, (23)
where
. 1 &
K =k? — ¥ ZK(xi,s)
i=1
and

N
KT —KT - %mei,r).
i=1

5. EXPERIMENTAL RESULTS

In this section, we implemented both the proposed kernel matched
filter detector (KMFD) described by (23) and the conventional
matched filter detector (MFD) described by (6) to detect targets
of interest (military vehicles) in the HYDICE images. The HY-
DICE imaging sensor generates 210 bands across the whole spec-
tral range (0.4 — 2.5 pm). But we only use 150 bands by discarding
water absorption and low signal to noise ratio (SNR) bands; the
spectral bands used are the 23rd-101st, 109th—136th, and 152nd-
194th.

We implemented KMFD with three different kernel functions,
each kernel function being associated with its corresponding fea-
ture space. The three different kernels used were i) the Gaussian

Fig. 1. Sample band (48th) from the Desert Radiance II image.

(b)

(d)

Fig. 2. Detection results for the Desert Radiance II image using
the kernel matched filter detectors (KMFD) and the matched filter
detector (MFD). (a) KMFD with the Gaussian RBF kernel, (b)
KMFD with the inverse multiquadric kernel, (c) KMFD with the
polynomial kernel and (d) MFD in the original input domain.

—&- Gaussian RBF kernel

—# Inverse multiquadric kernel
~%- Polynomial kernel

0.59 —A- Conventional matched fiiter

Probability of detection

. .
15 2 25 3
False alarm rates X107

Fig. 3. ROC curves obtained from the detection results for the
Desert Radiance II image shown in Fig.2.

RBF kernel, exp( _“x37_0y”2), ii) inverse multiquadric kernel,
—— 1 . andiii) 5th order polynomial kernel, ((x - y)+1 5.
T poly (x-y)+1)

[e—yll2+1
The HYDICE image from the Desert Radiance II data col-
lection was used to test both the kernel-based and conventional
matched filter detectors. The Desert Radiance II (DR-II) image
contains 6 targets located in the dirt road, as shown in the sample
spectral band in Fig. 1. The targets in the HYDICE image are all
military vehicles.
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In the experiments the target spectral signature s is obtained by
averaging the target samples collected from the right most target.
The covariance matrix and kernel matrix were calculated from the
randomly chosen background samples obtained from the given test
image.

Figure 2 shows the detection results for the DR-IT using KMFD
with the three different kernels and MFD. The corresponding ROC
curves for the detection results in Fig. 2 is shown in Fig. 3. KMFD
with any choice of the three kernels could detect all the targets
at a very low false alarm rate (INy ~ 3 X 10~%), while conven-
tional MFD detected all the targets at a much higher false alarm
rate (N = 3 x 107%).

6. CONCLUSIONS

We have extended the conventional matched filter detector to a
nonlinear version by implicitly mapping the input data into a much
higher dimensional feature space in order to make use of high-
order nonlinear correlations between the spectral bands of a hyper-
spectral image. KMFD, the kernel counterpart of MFD, was im-
plemented with several different kernels, each with different char-
acteristics. In general, KMFD with all the kernels that were used
showed a superior detection performance when compared to the
conventional MFD for the HYDICE images tested in this paper.

7. APPENDIX 1. (KERNEL PCA)

In this Appendix we present derivation of Kernel PCA and its
properties providing the relationship between the covariance ma-
trix and the corresponding Gram matrix. Our goal is to prove (21).
The estimated covariance matrix for the centered input data in the
feature space is given by Ce = XsXZ%. The PCA eigenvectors
are computed by solving the eigenvalue problem
1 N
Ave = Cove = ~ Z@(xi)q)(xi)TVq> 24)

i=1

N
1
=~ D < @(xi), ve > B(xi),

i=1

where vg is an eigenvector in F with a corresponding nonzero
eigenvalue A\. Eq. (24) indicates that each eigenvector ve with
corresponding A # 0 are spanned by ®(x1),...,®(xy) —i.e.

N
Vo =) Bi®(xi) = Xaf, (25)
i=1
where Xg = [ ®(x1) @(x2) ®(xy) | and B =
(B1, B2, ---,0n)T. Substituting (25) into (24) and multiplying
with ®(x,,)T,n =1,..., N, yields

N
A Bi < B(xn), B(xi) > (26)

i=1

Bi (x) B (x:)B(x:))T 3 B (x:)

1 i=1

[
2| =

-
Il

Bi < B(xn), Y (x5) < B(x;), D(x:) >>,

1 j=1
1,...,N.

[
2|

-
Il

for all n

We denote by K = K(X, X) = (K);; the N x N kernel matrix
whose entries are the dot products < ®(x;), ®(x;) >. Eq. (26)
can now be rewritten as

N)B =K§p, @7

where 3 turn out to be the eigenvectors with nonzero eigenvalues
of the kernel matrix K. Note that each 3 need to be normalized
by the square root of its corresponding eigenvalue.

The kernel matrix eigen decomposition is given by

K = BOB”, (28)

where B = [8' B2 ... B™] are the eigenvectors of the kernel
matrix and 2 is a diagonal matrix with diagonal values equal to
the eigenvalues of the kernel matrix K. The pseudoinverse of the

estimated background covariance matrix ¢&* and inverse of the
Gram matrix K ™! can also be written as

St = VeATI VLT (29)
and
K '=BQ"'8", (30)

respectively. The eigenvalues of the covariance matrix in the fea-
ture space and the eigenvalues of the kernel matrix are related by

1
A= NQ' (3D
Substituting (31) into (30) we obtain the relationship
1 1 —15T
K = NBA B, (32)

where NV is a constant representing the total number of background
clutter samples which can be ignored.
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