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ABSTRACT

Nuclear Quadrupole Resonance (NQR) offers an unequivo-
cal method of detecting and identifying land mines. Unfor-
tunately, the practical use of NQR is restricted by the low
signal to noise ratio (SNR), and means to improve the SNR
are vital to enable a rapid, reliable and convenient system.
In this paper, we develop a non-linear least squares detector
exploiting the temperature dependency of the NQR frequen-
cies as a way to enhance the SNR. Numerical simulations on
both synthetic and real measured data indicate an excellent
performance of the method.

1. INTRODUCTION

The use of land mines to impede the movement of enemy
troops has a long history, dating back to 1277 when the Chi-
nese used explosives to repel the invading Mongols. The
problem has escalated since, and it is estimated that there
are about 110 million active land mines in the world today,
killing or injuring an average of 70 people every day. Re-
moving them at the present rate will take more than 500
years and US$33 billion. For obvious reasons, the detection
of land mines has attracted a lot of attention in the literature,
and a variety of different approaches have been suggested
(see, e.g., [1]). The idea of using Nuclear Quadrupole Res-
onance (NQR) to detect explosives, and in particular land
mines, goes back to the early 1950s, when the British Army
suggested the possibility to researchers working with Nu-
clear Magnetic Resonance [2]. The topic has attracted sig-
nificant interest since; one of the primary reason for this
interest is that the NQR signal offers a unique signature,
differentiating it from most other mine detection techniques
that suffer from trying to detect non-unique features. Fur-
ther, current methods of detecting land mines have serious
disadvantages; metal detectors, for example, have difficul-
ties in magnetics soils and with mines of low metal con-
tent, and ground penetrating radar in clay or wet and con-
ducting soils, and with mines very close to the ground sur-
face. Although mine detection using NQR faces problems
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with interference and with the very low signal-to-noise ratio
(SNR), recent reports indicate that the unique NQR signa-
ture offers exceptionally high probability of detection [2–5].
NQR is a radiofrequency (RF) technique in which the ob-
served frequencies depend on the interaction between the
electric quadrupole moment of the nucleus and the elec-
tric field gradient generated at the nuclear site by exter-
nal charges. All common high explosives contain 14N, a
quadrupolar nucleus generating three sets of resonance fre-
quencies, providing an unequivocal method of detecting and
identifying an explosive, as well as estimating its quantity
and depth. Because of its high specificity, there is little or no
interference from other nitrogen-containing materials that
may be present - such as the mine casing or fertilizer in the
soil. As with a metal detector, a specifically designed planar
RF antenna is placed close to ground level and fed with a se-
quence of RF pulses at or close to the NQR frequency of the
explosive to be detected. The same antenna is then used to
detect the weak signals emitted by the explosive following
the excitation. These signals are of two types: free induc-
tion decays immediately following the pulse, and echoes ob-
served midway between a string of pulses, the latter having
the advantage that a large number of signals can be averaged
in a short time to improve sensitivity [2,6–8]. The important
difference from metal detection is that it is the explosive that
is detected, not any feature of the mine, so the false alarm
rate is low. However, the NQR signals can be very weak,
particularly from the common explosive TNT. Worth noting
is that NQR is also of particular interest due the possibil-
ity of using the technique to detect explosives at airports
and other public places, as well as for detecting narcotics1.
The few current publicly available approaches to detection
of the NQR signal are mainly based on linear filtering via
the Fast Fourier Transform or on matched filtering assum-
ing a reliable estimate of the temperature of the target [3,9].
These methods are limited due to phase and intensity uncer-
tainties in the NQR signal as well as the difficulty in accu-
rately measuring the temperature under ground. Given an
accurate temperature estimate, one may combine the dom-
inant frequency responses to a single response with higher

1Many narcotics contain nitrogen, enabling the use of the same NQR
techniques being developed for the detection of land mines.
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signal-to-noise ratio (SNR) [10]. Unfortunately, an impre-
cise temperature estimate prevents the shifted peaks from
adding up accurately. Herein, we present a natural exten-
sion to the work in [10], forming a nonlinear least squares
(NLS) approach, exploiting the fact that the shifts of the
spectral lines depend in a known way on temperature; by
matching the measured data to the data model formed over
a range of possible temperatures, the (unknown) tempera-
ture yielding the best match is found. The combined re-
sponse for this temperature is then used as a detection vari-
able. The proposed method is evaluated using both simu-
lated data, and real NQR data obtained from measurements
on a TNT sample. Both these evaluations indicates a strong
gain for the proposed method as compared to current state
of the art Fourier-based techniques.

2. DATA MODEL

The NQR signal can be well modeled as a sum of d damped
sinusoids [9–11]

y(t) =
d∑

k=1

αke−βkt+iωk(τ)t + w(t), (1)

for t = 1, · · · , N , where αk and βk denote the (complex)
amplitude and the damping constant of the kth sinusoid, re-
spectively. Typically, all the spectral lines will have approx-
imately the same damping constants, say β0, which may not
vary significantly with temperature, but may vary between
samples. We will initially not exploit this fact in an effort to
allow for cases when the damping constants are measurably
different; the resulting general algorithm then simplifies in
a natural way if we let βk ≈ β0. Further, ωk(τ) is the fre-
quency shifting function of the kth sinusoidal component
due to the (unknown) temperature of the explosive sample,
and w(t) is an additive colored noise. An important point
to note is that the number of damped sinusoids, as well as
the frequency shifting function for each spectral line ωk(τ),
may be assumed to be known, whereas αk, βk, as well as the
temperature of the explosive sample, τ , are unknown. For
NQR signals of many explosive samples, particularly TNT,
the frequency shifting function at likely land mine tempera-
tures can be well modeled as [8]

ωk(τ) = 2π(ak − bkτ) (2)

where ak and bk, for k = 1, . . . , d, are given constants.
Often, the relative ratio between the modulus of the sig-
nal amplitudes, |αk|, are approximately known for a given
explosive sample. To exploit this knowledge, we will let
αk = ρkδk, where δk denotes the a priori known scaling.

3. NON-LINEAR LEAST SQUARES DETECTOR

For derivation purposes, we will herein model w(t) as a
complex white Gaussian noise. This is a quite crude ap-
proximation, but we note that the NLS estimator will for
sinusoidal estimation asymptotically achieve the same per-
formance as the maximum likelihood estimator even in the
colored noise case [12]. Rewrite (1) as

yN = Dτ,βρ + wN , (3)

where

yN =
[

y(1) · · · y(N)
]T

(4)

Dτ,β = Eτ � Fβ (5)

Eτ =

⎡
⎢⎢⎢⎣

eiω1(τ) · · · eiωd(τ)

...
. . .

...

eiNω1(τ) · · · eiNωd(τ)

⎤
⎥⎥⎥⎦ (6)

Fβ =

⎡
⎢⎣

δ1e
−β1 · · · δde

−βd

...
. . .

...
δ1e

−β1N · · · δde
−βdN

⎤
⎥⎦ (7)

ρ =
[

ρ1 · · · ρd

]T
(8)

β =
[

β1 · · · βd

]T
(9)

with (·)T and � denoting the transpose and the Hadamard
(elementwise) product, respectively. Further, wN is defined
similar to yN . Using (3), the NLS estimate can be obtained
as (see, e.g., [13])

{
β̂, ρ̂, τ̂

}
= arg min

β,ρ,τ
‖ yN − Dτ,βρ ‖2

2, (10)

where ‖ · ‖2 denotes the 2-norm, yielding the least-squares
estimate of ρ as

ρ̂ =
(
D∗

τ,βDτ,β

)−1
D∗

τ,βyN , (11)

where (·)∗ denotes the conjugate transpose, which inserted
into (10) yields the maximization

{
β̂, τ̂

}
= arg max

τ,β
‖ ΠDτ,β

yN ‖2
2, (12)

where

ΠDτ,β
= Dτ,β

(
D∗

τ,βDτ,β

)−1
D∗

τ,β. (13)

Minimizing (12) for the general case of d unknown damping
constants results in a (d+1)-dimensional search, over τ and
β, each requiring about O(Nd2) operations to compute.
However, exploiting the fact that one often can approxi-
mate βk ≈ β0, the maximization in (12) can be obtained
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by a 2-D search, over temperature and the common damp-
ing constant β0; initial estimates for both these parameters
exist, and only a quite limited search region is required. The
detection variable is thus selected as

ξ = max
τ,β0

‖ ΠDτ,β0
yN ‖2

2, (14)

where ΠDτ,β0
is defined as in (13), but with βk = β0. We

note that the matrix inversion in (13) may be poorly condi-
tioned for specific τ due to the resulting closely spaced fre-
quency components. To alleviate this problem, we employ
a low rank approximation technique, noting that a least-
squares solution can be found using the singular value de-
composition. Let

Q
�
= D∗

τ,βDτ,β = UΣV∗, (15)

where Σ is a diagonal matrix containing the d singular val-
ues of Q on the diagonal, and where U and V are unitary
matrices. Further, let σl denote the lth singular value of Q,
and note that the solution minimizing ‖Qx − D∗

τ,βyN‖2

can be found as [14]

x̂ =
d̃∑

l=1

σ−1
l U∗

l D
∗
τ,βyNVl, (16)

where Ul and Vl denote the lth column of U and V, re-
spectively, and where d̃ is the rank of Q, or alternatively the
selected low-rank approximation of Q. Using (16), (14) can
be expressed as

ξ = max
τ,β0

y∗
ND∗

τ,βx̂ . (17)

If the temperature region of interest includes very closely
spaced, or even overlapping, spectral lines, one should se-
lect d̃ = d − 1, otherwise d̃ = d. In the numerical simula-
tions below, we have used the former.

4. NUMERICAL EXAMPLES

In this section, we examine the performance of the proposed
detector using both simulated and real NQR data measured
by the NQR group at King’s College London. A typical
NQR measurement allows for the estimation of a number
of consecutive decaying echoes for every transmitted RF
pulse, with each echo consisting of 256 data samples. The
damping of the NQR signal depends on the explosive exam-
ined; typically RDX decays much more rapidly than TNT,
and it is therefore easier to detect. Here, the examined real
NQR data is obtained as the NQR response from a TNT
sample at τ = 298 K; the simulated data has been gener-
ated to mimic such a signal, and is from (1), with a damp-
ing factor of β0 = 0.0015 and with (uniform) random ini-
tial phases, and an autoregressive noise model derived from
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Figure 1: Performance gain as a function of the measured
echo number for a real NQR signal.

real NQR data. Typically, current techniques only mea-
sure the response of a single a priori known resonance fre-
quency [15]; to ensure the most beneficial performance for
this approach, we will herein allow it to have perfect knowl-
edge of the sample temperature, so that the most dominat-
ing resonance frequency is exactly known. We denote this
the demodulation approach with perfect temperature knowl-
edge (DMA-p). Typically, it is difficult to estimate the sam-
ple temperature with more than 5 degrees (K) accuracy; as
a comparison, we therefore also include the estimate for a
sample with 5 degrees offset, terming this the demodulation
approach with realistic temperature knowledge (DMA-r).
Figure 1 illustrates the performance gain of the detectors as
the gain factor between the detection thresholds for a sam-
ple containing TNT and for one without TNT, as a func-
tion of the measured echo number. The methods have been
evaluated on a single echo of real NQR data; the figure il-
lustrates how the gain decreases for the higher order (more
damped) echoes. A gain larger than one indicates a probable
detection of the TNT sample. Here, exact temperature and
damping knowledge has been assumed for both the DMA-p
and the NLS methods; as the temperature of the reflecting
sample will typically not be exactly known, the gain of the
DMA-r is given as a reference. We again stress that the
NLS method will not suffer from such temperature uncer-
tainties, and the gain for the NLS method evaluated with a
temperature uncertainty will yield the same gain as if the
temperature was exactly known. Figure 2 shows the gain
factor for simulated data, as a function of the signal to noise
ratio (SNR), defined as SNR = σ−2

w

∑d
k=1 |αk|2, where

σw denotes the standard deviation of w(t). Both these fig-
ures indicates a strong gain of the NLS method as compared
to the DMA method, even when the latter is allowed to have
perfect knowledge of the sample temperature. Figure 3 il-
lustrates the receiver-operator curve, showing the probabil-
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ity of a correct detection, as a function of the probability of
false alarm, for the 8th echo of a real NQR signal.
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Figure 2: Performance gain as a function of the SNR for a
simulated NQR signal.
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Figure 3: The receiver-operator curve for real NQR data.
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