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ABSTRACT

Given a relative maximum of the log-likelihood function, how to
assess whether it is the global maximum? This paper investigates
a statistical tool, which answers this question by posing it as a
hypothesis testing problem. A general framework for construct-
ing tests for global maximum is given. The characteristics of the
tests are investigated for two cases: correctly specified model and
model mismatch. A finite sample approximation to the power is
given, which gives a tool for performance prediction and a mea-
sure for comparison between tests. The tests are illustrated for
two applications: estimating the parameters of a Gaussian mixture
model and direction finding using an array of sensors - practical
problems that are known to suffer from local maxima.

1. INTRODUCTION

The maximum likelihood (ML) estimation method is one of the
standard tools for parameter estimation. A major drawback of this
method when applied to non-linear estimation problems is the fact
that the associated likelihood equations required for the derivation
of the estimator rarely have a closed form analytic solution. To
solve the resulting global optimization problem, initiate and con-
verge methods are often applied. These methods are based on an
initial guess (often found by a simpler method) which is followed
by a local, often iterative, optimization procedure (e.g. the EM
algorithm). As a consequence, the performance of these meth-
ods highly depends on the starting point. In particular, if the log-
likelihood function is not strictly convex and there is no available
method that is guaranteed to provide an initial guess within the at-
traction region of the global maximum, then there is a risk that a
local search will stagnate at a local maximum. This phenomenon
leads to large-scale estimation errors.

The maximum likelihood framework would benefit from an
answer to the following question: Given a relative maximum of
the log-likelihood function, how to assess whether this is the global
maximum? In this paper we take a statistical approach to answer-
ing this question. Specifically, given a relative maximum, a statis-
tical test is performed to test whether or not it is the global maxi-
mum.

Several global maximum tests have been proposed [1, 2, 3].
While applied to cases where the statistical model is correct, these
tests are based on tests for model mismatch [4] and the observation
that a local maximum of the log-likelihood function in a correctly
specified model is in fact a global maximum of a particular mis-
specified model - a model in which the parameters are restricted to
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a region which does not contain the true parameter. A drawback of
these tests is that under model mismatch, they cannot distinguish
between local and global maxima.

The contribution of this paper is as follows. For correctly spec-
ified models a general framework for constructing tests that a lo-
cal maximum is the global maximum is presented. Then a class
of new tests is given, which are simpler to compute and in some
cases give better performance than previously proposed methods.
In addition, we derive an approximation of the power of the tests,
which is useful for predicting performance and provides a measure
for comparing between tests. For cases where model mismatch
can occur, a method is given for off-line calibration of the tests to
improve performance. Finally, we illustrate the method for two
parameter estimation problems.

2. PROBLEM FORMULATION

Consider a collection of n i.i.d. P × 1 random vectors yt, t =
1, . . . , n drawn from an unknown density g(y). The information
we want to extract from the data is encoded in a K × 1 parameter
vector θ = [θ1, θ2, . . . , θK ]T , through which we define a regular
parametric class [5] of density functions {f(y, θ) : θ ∈ Θ}.

Denote by Ln(Yn; θ) = 1
n

∑n
t=1 log f(yt; θ) the normal-

ized log-likelihood function of the measurements, where Yn =

[y1 y2 . . . yn]. Denote by θ̂n = arg maxθ∈Θ Ln(Yn; θ) the
ML estimator (MLE).

Denote by E {·} the expectation with respect to true under-

lying density g(y), and let θ∗ �
= arg maxθ∈Θ E {log f(y; θ)}.

Theorems 2.1, 2.2, and 3.2 of White [6] assert that under possible
model mismatch θ̂n

a.s.→ θ∗ and
√

n(θ̂n − θ∗) is asymptotically
zero-mean Normal distributed with covariance matrix C(θ∗) =
A−1(θ∗)B(θ∗)A−1(θ∗), where A(θ) = E

{∇2
θ log f(y; θ)

}
,

B(θ) = E
{∇θ log f(y; θ)∇T

θ log f(y; θ)
}
. When the model is

correctly specified, i.e., g(y) = f(y, θ0) for some unique θ0 ∈
Θ, this result becomes the standard consistency, and asymptotic
Normality result for the MLE, where θ∗ = θ0, and C(θ0) =
−A−1(θ0) = B−1(θ0) is the inverse of the Fisher information
matrix (FIM).

Denote by θ̃n one of the relative maxima of the log-likelihood
function. The problem addressed in this paper can be formulated
as a hypothesis testing problem. Given θ̃n, decide between

H0 : θ̃n = θ̂n

H1 : θ̃n �= θ̂n . (1)

A statistical test which gives a solution to this problem is called a
test for global maximum [1, 2].
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3. CONSTRUCTION OF THE TESTS

We start by deriving the asymptotic distribution of a general class
of statistics which are functions of θ̃n and Yn. This will lead to
the construction of tests of (1). A similar treatment is given in
the context of model specification testing in [4]. The tests given
in [1, 2, 3] can be derived as special cases of this construction.
Consider a vector valued function e(y, θ) : R

P × Θ → R
Q,

and define the vectors hn(θ) = 1/n
∑n

t=1 e(yt, θ), and h(θ) =

E {e(y, θ)}, the Q×K matrix Hn(θ) = 1/n
∑n

t=1 ∇T
θ e(yt, θ),

and its expectation H(θ). Finally, define the Q × Q matrix V(θ)
by

E
{[

e(y, θ) − h(θ) − H(θ)A−1(θ)∇ log f(y; θ)
]×[

e(y, θ) − h(θ) − H(θ)A−1(θ)∇ log f(y; θ)
]T

}
,

and its empirical estimate Vn(θ) by

1

n

n∑
t=1

[
e(yt, θ) − hn(θ) − Hn(θ)A−1

n (θ)∇ log f(yt; θ)
] ×

[
e(yt, θ) − hn(θ) − Hn(θ)A−1

n (θ)∇ log f(yt; θ)
]T

,

and assume that e(y, θ) is such that V(θ∗) is nonsingular.

Theorem 1

n
[
hn(θ̂n) − h(θ∗)

]T

V−1
n (θ̂n)

[
hn(θ̂n) − h(θ∗)

]
(2)

is asymptotically distributed as Chi-square with Q degrees of free-
dom (χ2

Q).

Proofs of all theorems are given in [7]. Theorem 1 is used
to construct tests for global maximum in the following manner.
Choose a function e(y, θ) having zero mean at the point θ∗, that
is

h(θ∗) = E {e(y, θ∗)} = 0Q×1 . (3)

This function will be called the global-maximum validation func-
tion. Theorem 1 asserts that under H0, and when (3) is satisfied,
the statistic

Sn = nhT
n (θ̃n)V−1

n (θ̃n)hn(θ̃n) , (4)

with V−1
n (θ̃n) computed by (2) is asymptotically χ2

Q distributed.
Denote by Fχ2

Q
(·) the χ2

Q cumulative distribution function. There-

fore, a false alarm level α test of the hypotheses (1) is made by
comparing Sn to the threshold F−1

χ2
Q

(1 − α). If Sn exceeds the

threshold, H0 is rejected and one concludes that the iterative local
search should be reinitiated in the hope of convergence to a differ-
ent maximum. Otherwise, the null hypothesis cannot be rejected
and θ̃n is declared a global maximum. If (3) does not hold for any
other local maximum of the ambiguity function, then the test is
consistent, i.e., it has asymptotically unit power for any α ∈ (0, 1)
(see [1, 3], and the discussion in Sec. 5).

3.1. Moment Based Tests

Moments based tests were previously proposed as tests for model
mismatch [4] but were not applied to the problem of discrimina-
tion of local maxima. The tests are based on the property that the

moments of the distribution induced by the estimated parameter
should be in good agreement with the empirical moments of the
data. Therefore, these tests are especially suited for cases in which
the underlying physical model specifies a simple parametrization
of one of the moments of the data. For example, assume that the
first moment of y is modelled by µ(θ) =

∫
yf(y; θ)dy, where

µ(·) is a pre-specified non-linear function. Then to construct a
test, which is based on the first moment, e(y, θ) is taken to be
e(y, θ) = y − µ(θ). This choice of e(y, θ) leads to hn(θ̃n) =
1
n

∑n
t=1 yt − µ(θ̃n). If the first moment of the data does not de-

pend on θ or is weakly dependent, it is possible to base the test
on any other moment. For example, one can base e(y, θ) on one
element of the correlation matrix e(y, θ) = [y]i [y]j − Rij(θ),
where Rij(θ) =

∫
[y]i [y]j f(y; θ)dy is pre-specified from the

underlying model. Tests that are based on the moments of the data
are easier to compute than the tests available in the literature, and,
as will be shown in the simulation results, remarkably do not re-
duce performance.

In Sec. 6, moment based tests are compared to Biernacki’s
test [3], in which e(y, θ)=log f(y; θ)−∫

log f(y; θ)f(y; θ)dy.

Thus, Biernacki’s test compares the log-likelihood evaluated at θ̃n

and its expected value, which is calculated as if θ̃n is the true pa-
rameter.

4. MISSPECIFIED MODELS

If the test statistic is designed under the assumption that the model
is correctly specified but the actual underlying distribution is out-
side the parametric family, then (3) may be violated. In this case,
Sn will not be χ2

Q distributed and hence the specification of the
level is incorrect. When h(θ∗) �= 0 it can be shown that the finite
sample distribution of the statistic is approximately a non-central
χ2

Q with noncentrality parameter ∆n = nhT (θ∗)V−1(θ∗)h(θ∗),
denoted by χ2

Q(∆n). Therefore, specifying the level of the test ac-
cording to the χ2

Q distribution is no longer valid, and in fact, as the
number of samples increases, the false alarm probability increases
to one regardless of the test threshold.

However, suppose an upper bound on ∆n can be found, say
µn. Then by setting the threshold according to the non-central
Chi-square critical value F−1

χ2
Q

(µn)
(1 − α) we insure that the false

alarm probability decreases (instead of increases) with n. This will
be demonstrated in Sec. 6.1.

5. FINITE SAMPLE POWER APPROXIMATION

To derive the power function, the distribution of θ̃n under H1

needs to be approximated. Therefore, assumptions on the structure
of the ambiguity function, defined by a(θ) = E {log f(y; θ)}, at
different local maxima are required. Assume that the system of
equations ∇a(θ) = 0K×1, has a finite number of solutions in Θ
and each one of these solutions is an interior point of Θ. In addi-
tion, at each of these points, the matrix ∇2a(θ) is either negative
definite or positive definite. The ambiguity function a(θ) has its
global maximum at θ∗. Denote by θm, m = 1, . . . , M , the other
M local maxima of a(θ).

Theorem 2 ∃N such that ∀n > N , Ln(Yn; θ) has M + 1 local
maxima w.p.1. Furthermore, the location of these relative maxima
are strongly consistent estimates for θ∗ and θm, m = 1, . . . , M .
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Let Θm be a closed neighborhood of θm, in which θm is the
highest relative maximum of a(θ). Define the m’th local-MLE
by θ̂m

n = arg maxθ∈Θm Ln(Yn; θ), m = 1, . . . , M . Theorem 2
asserts that for sufficiently large n, θ̃n will be equal to one of the
local-MLEs θ̂m

n . The local-MLE θ̂m
n is the MLE associated with

the model {f(y, θ) : θ ∈ Θm}. By applying Theorem 1 we
obtain the following:

Corollary 1 If V(θm) is nonsingular,

n
[
hn(θ̂m

n ) − h(θm)
]T

V−1
n (θ̂m

n )
[
hn(θ̂m

n ) − h(θm)
]

(5)

is asymptotically χ2
Q distributed.

Hence, for the test to be informative for the hypotheses, h(θm)
must not equal 0Q×1. Otherwise the statistic is asymptotically
identically distributed under the two hypotheses. When θ̃n =

θ̂m
n and h(θm) �= 0K×1, the test statistic (4) is approximately

χ2
Q(εm

n ), where εm
n = nhT (θm)V−1(θm)h(θm). Now, recall-

ing that for a given level α, the threshold of the test is set to
F−1

χ2
Q

(1 − α), the finite sample power of the test against a local

maximum at θm can be approximated by

βn ≈ 1 − Fχ2
Q

(εm
n )(F

−1

χ2
Q

(1 − α)) . (6)

Therefore the power of the test against a local maximum at θm is
characterized by hT (θm)V−1(θm)h(θm), which will be called
the power characteristic of the test as a function of θm. For any
fixed x, lim∆→∞ Fχ2

Q
(∆)(x) = 0. Hence, if the power charac-

teristic is not identically zero, the level of the test approaches 1 as
n increases. In Sec. 6.1 an example will be given in which this
approximation is accurate even for small n.

6. SIMULATION RESULTS

The asymptotic regime assumed throughout the paper raises the
question of small sample performance. In this section, tests for
global maximum are evaluated through 1000 Monte Carlo itera-
tions. By computing the empirical level and power of the tests,
we evaluate: (a) the accuracy of the asymptotic approximation
F−1

χ2
Q

(1 − α) for the level α threshold of the test, (b) how fast

the power βn of the test approaches 1 as the number of samples
increases, and (c) how accurate is the finite sample power approx-
imation (6). Finally, the sensitivity of the tests to model mismatch
is examined and the threshold adjustment procedure of Section 4
is demonstrated.

6.1. Estimation of Gaussian Mixture Parameters

The problem of estimation of Gaussian mixture parameters arises
in non-parametric density estimation [8] and a variety of cluster-
ing problems [9]. The MLE for this problem is usually found by
using the EM algorithm. In [9], the authors describe a method that
attempts to find the global maximum. However, even this state of
the art method might stagnate at a local maximum, and therefore,
tests for global maximum are useful.

We consider the univariate case, in which independent scalar
measurements are generated according to a two component uni-
variate Gaussian mixture density, where the parameter vector con-
sists of the two means θ = [η1 η2]

T . The number of components,
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Fig. 1. Gaussian mixture: performance when the model is cor-
rectly specified.
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Fig. 2. Gaussian mixture: performance under model mismatch.

the variances, and the mixing probabilities are assumed known. In
the simulation, the true parameter is θ = [0, 3]T , the variances are
σ2

1 = 1, σ2
2 = 0.5, the mixing probabilities are p1 = 1 − p2 =

0.35 and it is known that Θ = [−1, 4] × [−1, 4]. In this setting,
the likelihood function has two relative maxima.

Biernacki’s test [3] and the first moment test of Section 3.1
were applied to this problem. In Fig. 1, the empirical level and
power, and the analytical approximate power (6) are presented,
where B and M are shorthand notations for Biernacki’s test and
the first moment test, respectively.

Next, the robustness of the tests to model mismatch was eval-
uated. The mismatch is due to misspecified values of the param-
eters that are assumed known, namely the variances of the two
mixtures. A discussion on scenarios in which this kind of model
mismatch occurs was recently given in [10]. The MLE and the
tests were computed according to the model given before but the
samples were generated according to a different model. The new
model, which is outside of the parametric class, is the same Gaus-
sian mixture but with variances σ2

1 = 0.75 and σ2
1 = 0.4. As

can be seen in Fig. 2, the moment test is robust to this model mis-
match whereby Biernacki’s test suffers as the number of samples
increase. Biernacki’s test detects the model mismatch and rejects
the null hypothesis even when the relative maximum is indeed the
global one. The moment test is not sensitive to this model mis-
match. Even though the MLE is slightly inconsistent in this case
(θ∗ = [−0.0248 3.0052]), equation (3) is still approximately sat-
isfied and the performance of the test is preserved.

In Fig. 3 the effect of the threshold correction of Sec. 4 is pre-
sented. An upper bound on ∆n for each of the tests was found
under the assumption that the maximal deviation from the nomi-
nal values of σ2

1 and σ2
2 are 0.25 and 0.1 respectively. Due to the

threshold correction, the level of the tests is decreasing rather than
increasing as n increases, at the price of reduced power.
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Fig. 3. Gaussian mixture: performance of the tests under model
mismatch, after threshold correction.
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Fig. 4. Direction finding: performance when the model is correctly
specified.

6.2. Direction Finding in Array Signal Processing

We adopt the standard narrow band model of [11]. We consider
the estimation of the directions of two uncorrelated narrow band
Gaussian sources using a uniform linear array of P = 4 sensors
with λ/2 spacing between elements. The received signal model
is given by yt = D(θ)st + et, where yt ∈ CP is the noisy
measurement vector, D(θ) = [d(θ1), d(θ2)], where [d(θ)]p =
exp{jpπ cos(θ)}, p = 0, 1, 2, 3 is the steering vector, st contains
the two signal components, and et is a temporally and spatially
white circular Gaussian noise. This signal model corresponds to
the so called stochastic signal model in which the received sig-
nal at the array is distributed as a temporally white zero-mean
circular Gaussian random vector with covariance matrix C(θ) =
D(θ)KsD

H(θ) + σ2I, where, due to an uncorrelated sources as-
sumption, Ks = diag(σ2

s1, σ
2
s2), σ2

s1 and σ2
s2 are the two source

variances, and σ2 is the noise variance. The noise and signal
variances are assumed known. The unknowns are the source di-
rections, θ = [θ1, θ2]

T . In the simulations θ = [1.4, 1.7]T ,
[σ2

s1, σ2
s2] = [1, 4], and σ2 = 1. In this problem, the likelihood

function has two relative maxima.
Biernacki’s test [3] and a second moment test which is based

on the first off diagonal element of the covariance matrix were
applied. In Fig. 4 it is seen that for this choice of parameters the
second moment test outperforms Biernacki’s test.

Next, the robustness to model mismatch was tested as the noise
variance was altered from 1 to 1.2 without changing the parametric
class. In Fig. 5 it is seen that Biernacki’s test is more sensitive to
this kind of model mismatch than our second moment test.

7. CONCLUSIONS AND FUTURE WORK

This paper has presented a method for detecting a case in which a
local search for the maximum likelihood has stagnated at a local
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Fig. 5. Direction finding: performance under model mismatch.

maximum. This is a useful tool in the solution of the global op-
timization problem associated with the ML method. Because ex-
isting tests are sensitive to model mismatch, the general treatment
given here is necessary for implementing this tool in practice. The
framework given for the construction of tests and the power anal-
ysis enable us to pose fundamental questions of optimality: Given
a statistical model, what is the best choice of e(y, θ) in terms of
achieving maximum power for a given level with minimum sensi-
tivity to model mismatch? This remains an open question.
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