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ABSTRACT
In this paper, we propose a new method to achieve sparse-
ness via a competitive learning principle for the linear ker-
nel regression and classification task. We form the duality of
the LASSO criteria, and transfer an �1 norm minimization
to an �∞ norm maximization problem. We introduce a novel
solution derived from gradient descending, which links the
sparse representation and the competitive learning scheme.
This framework is applicable to a variety of problems, such
as regression, classification, feature selection, and data clus-
tering.

1. INTRODUCTION
The central problem of supervised learning or regression
can be formulated as function approximation. In either case
we have pairwise correspondence of samples x and y from
two sample space X and Y, and the task is to find a function
f(·), such that y = f(x). More precisely, if the model of
the function is chosen, the function can be written as y =
f(x, β), where β is the parameter vector of the model. For
example, the linear kernel regression assumes such func-
tion is a linear combination of a set of basis functions, i.e.
y =

∑
i

βihi(x) = h(x)�β, where β = [β1, ...βd]
� ∈

�d, h(x) = [h1(x), ...hd(x)] is a set of basis functions.
hi(x) = K(x,xi), where K(·) is a certain symmetric ker-
nel function.

Typically, it is assumed that the output variable y from
the training set was contaminated by additive white Gaus-
sian noise, i.e. yi = f (xi, β) + wi, for i = 1, ..., n, where
[w1, ..., wn] is a set of i.i.d. white Gaussian random variable
with variance σ2. Thus, the conditional probability p(y|β)
is Gaussian, i.e. p(y|β) = N(y|h(x)�β, σ2I). We write
H = h(x)�, where H is called design matrix.

Simply apply Maximum Likelihood Estimator (MLE),
we get least square error estimation, β̂ = (H�H)−1H�y.
Note there is not any preference on β, so its prior is a uni-
form distribution. With a zero-mean Gaussian prior for β
with variance A, the estimation is turned into maximum a
posteriori (MAP) process. The prior of β then becomes an
�2-norm regularization term in the log-likelihood, where it

will prefer a small β. When A = µ2I , it is called ridge
regression [1].

Other β prior can also be applied. If sparseness is pre-
ferred, then Laplacian prior can be adopted for β, i.e.

p(β|α) =
(α

2

)k

exp(−α ‖β‖1),

where α is a parameter of the Laplacian pdf, and ‖x‖i,
i = 0, ...∞ is the so called �i-norm. Laplacian distribution
features heavy tail and has a high concentration at near-zero
area, which means that most of the β’s components will be
zero, and the probability of having a large value is relatively
high, comparing to the Gaussian distribution with the same
variance. Utilizing the same MAP process, the estimation
of β is given by

β̂ = arg min
β

{
‖y − Hβ‖2

2 + t ‖β‖1

}
, (1)

where t = 2σ2α is a control parameter, which can favor
either the squared error term or the �1-norm regularization
term. This criterion is also known as LASSO [2]. It is worth
noting here that due to the non-Gaussian prior, the MAP es-
timation is not equivalent to the Bayesian estimation as it
is in the ridge regression. So the estimation is biased. To
make a unbiased estimation, one needs to integrate in all
β space, which is computationally prohibitive. However,
if the posterior concentrates at certain point, then this bi-
ased estimation may only have a small variance from the
unbiased estimation, which is desirable. This is one rea-
son why a concentrated sparse prior is preferred. Some re-
searchers introduced “hyper-parameter” to further steepen
the prior, like in Relevance Vector Machine (RVM) [3] and
Figueiredo’s work [4].

Another reason that a sparse representation is desirable
is because it improves the generalization of a learning sys-
tem. For example in supervised learning, the goal is to infer
a mapping based on the training samples. The generaliza-
tion capability is accomplished by reducing the complexity
of the model, which is characterized by the number of non-
zero parameters. This problem is formalized as �0-norm
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minimization. It is known that �0-norm minimization is NP-
hard [5]. However, it is established that the solution of the
�1 problem is the same as the �0 problem if certain condition
is satisfied. So, �1-norm problem is still an important issue.

In this paper, we proposed a method to solve the �1-
norm version of the problem. We construct the dual problem
of LASSO criterion as in Eq. (1) and use a gradient-based
method to find the solution. This method is by no means
claimed to be superior to the quadratic programming (QP)
based method, however it opens a perspective to address
the problem differently. Its competitive learning nature can
also motivate other biologically plausible models for solv-
ing similar problems.

The reminder of paper is organized as follows: In Sec-
tion 2 we formulate the dual problem of the LASSO, and
propose a solution base on gradient descend. We reformu-
late the proposed algorithm in Section 2.3. The experiment
results and comparison with existing sparse optimization al-
gorithms is in Section 3. Section 4 provides conclusions.

2. METHOD
2.1. Duality
First, we will construct the dual problem of Eq. (1). Fig. 1
illustrates this problem. The Eq. (1) can be geometrically
explained as the minimum �1-norm between the origin and
the convex set K. This distance, according to duality theory,
is equal to the maximum �∞-norm distance between the ori-
gin and the plane that separate the origin and the convex set
K.

Theorem 2.1 If we have

β̂′ = arg max
β

−

[
∂Z/∂tβ
−1

]T [
tβ
Z

]
∥∥∥∥∥
[

∂Z/∂tβ
−1

]∥∥∥∥∥
∞

,

where Z = ‖y − Hβ‖2
2, then β̂′ = β̂, and β̂ is the same as

in Eq. (1).

The generalized proof can be found in [6].

2.2. Derivations
Let Z = ‖y − Hβ‖2

2 = β�H�Hβ − 2y�Hβ + y�y, and

J(β) =
[

∂Z
∂tβ

−1

]�
=

[
2/t(H�Hβ − H�y)
−1

]�
(2)

Now we can formulate the dual problem of the original
LASSO criterion,

E (β) = −
J(β)

[
tβ
Z

]
‖J(β)‖∞

, (3)

||ß||1

||Y-Hß||
2
2

B

K

Z

A

ß

Fig. 1. Geometry explanation of duality. Point B is the closest
point in K to origin.

Therefore,

∂Z

∂tβ
=

2
t
(H�Hβ − H�y). (4)

∂J

∂β
=

⎡
⎢⎣ 2

t H
�H

0
...
0

⎤
⎥⎦ . (5)

Letting C = H�H = [c1, ..., cn], and plugging with Eq. (5)
and Eq. (4), we get

∂E

∂β
=

2Cβ

‖J(β)‖∞
−
[
β�Cβ − y�y

]
‖J(β)‖2

∞
· ∂ ‖J(β)‖∞

∂β
.

Now we proceed to compute the partial derivative of ‖J(β)‖∞
w.r.t. β.

‖J(β)‖∞ = max
i

{∣∣∣∣2t (β�ci − y�hi

)∣∣∣∣ , 1
}

=

√√√√max
i

{∣∣∣∣2t (β�ci − y�hi)
∣∣∣∣
2

, 1

}

So,
∂ ‖J(β)‖∞

∂β
=

1
2
‖J(β)‖−1

∞

· ∂

∂β
max

i

{∣∣∣∣2t (β�ci − y�hi

)∣∣∣∣
2

, 1

}
.

(6)

The last partial derivative term in Eq. (6) needs some
special treatment. The difficulty of the analysis lies in the
discontinuity caused by the maximum function. This prob-
lem can be circumvented by the use of the following equal-
ity. Let {ai} be a set of positive real scalars; then it gener-
ally holds that

max
i

{ai} ≡ lim
r→∞

[∑
i

ar
i

] 1
r

.
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This is just another identity of the �∞-norm, which is dif-
ferentiable. We have not yet get the strict derivation of this
method. In fact, a similar technique can be seen in [7], in
which Kohonen derived the vector quantization (VQ) algo-
rithm base on this idea. In [8], a competitive learning algo-
rithm has been derived from a maximum criteria function.
Based on aforementioned observation, we conjecture that
the order of the partial derivative and the max function can
be exchanged. This leads to the following updating rules.

∂

∂β
max

i

{∣∣∣∣2t (β�ci − y�hi

)∣∣∣∣
2

, 1

}
=

⎧⎨
⎩

8
t

(
β�cm − y�hm

) · cm, if
4
t2
(
β�cm − y�hm

)2
> 1

[0, 0...0]�, otherwise.
,

(7)
where m = arg max

j

(∣∣β�cj − y�hj

∣∣).
Rearrange these equations, we have the final updating

rules,

∇β ∝
⎧⎨
⎩

2Cβ
‖J(β)‖∞

− 4[β�Cβ−y�y]
t‖J(β)‖3

∞
· (β�cm − y�hm

)
cm

2Cβ
‖J(β)‖∞

(8)
The switching condition of these two updating rules is the
same as that in Eq. (7)

2.3. Gradient Sparseness Optimization Algorithm
We summarize the training procedure in Algorithm 1.

Each iteration of this algorithm is computational efficient,
because it only involves matrix multiplication and maxi-
mum function. The time complexity of each iteration is
O(kn), where k is number of basis vector and m is the di-
mension of each basis vector.

3. EXPERIMENTS
3.1. Kernel Regression
Our first experiment illustrates the performance of the pro-
posed algorithm in kernel regression. The regression model
is

y = f(x, β) = β0 +
k∑

i=1

βiK(x,xi),

where K(x,xi) = exp{− ‖x−xi‖2

2σ2 } is the kernel function,
xi and σ are the kernel parameters. The function to be
approximated is 1 − d sinc function y = sin(x)/x. We
randomly collected 150 samples and added Gaussian noise
with variance 0.01. The first row in Fig. 2 shows the fitting
results of proposed method, ridge regression and LASSO
regression, respectively. The dots are samples with noise,
and the dashed lines are the ground truth sinc function. Solid
lines show the approximation results. The circled dots cor-
respond to the kernels with nonzero weight, a.k.a the “sup-
porting kernels”. In the second row, we use the bar figure to

Algorithm 1 Gradient Sparseness Optimization Algorithm

1: Preprocessing: Get the training set (xi,yi), i =
0, 1, 2, ..., n. For each i, yi = yi − ȳ, where ȳ =
1
m

m∑
i=1

yi.

2: βi = 0, i = 0, 1, 2, ..., k.
3: Initialize the design matrix H, and compute C =

H�H.
4: repeat
5: Compute m = arg max

j

(∣∣β�cj − y�hj

∣∣).
6: if 4

t2

(
β�cm − y�hm

)2
> 1 then

7: Update β with:

∇β ∝ 2Cβ

‖J(β)‖∞
− 4

[
β�Cβ − y�y

]
t ‖J(β)‖3

∞
· (β�cm − y�hm

)
cm

8: else
9: Update β with:

∇β ∝ 2Cβ

‖J(β)‖∞
10: end if
11: until Objective function in Eq. (3) reaches the target

value.

display the weights of those kernels. As it clearly indicated,
both proposed method and LASSO achieve sparseness. The
�∞-norms are also marked on these figures. The proposed
method in our testing performs better than LASSO regres-
sion.

Fig. 3 illustrate how the control parameter t = 2σ2α
affects the mean square error and model sparseness. We
conducted 20 tests with t ranging from 0.3 to 1.5. As in-
dicated in the figure, greater t makes the model fit well but
increases its complexity, and vice versa.

3.2. Classification
The experiment addressed the kernel-based classifier for two-
class problems: A special case of the regression problem
with y ∈ {+,−}. The classifier is formulated as the follow-
ing two functions:

p(+ | x) = ψ(Hβ+)
p(− | x) = ψ(Hβ−)

where ψ denotes the logistic function. If p(+ | x) > p(− |
x), x belongs to the class +. Otherwise, x belongs to the
class −.

We used two data sets from real-data problems: the Pima
indian diabetes1, which were collected from women of Pima

1Downloadable at www.stats.ox.ac.uk/pub/PRNN
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Fig. 2. Kernel regression results. The dashed lines are true sinc functions. Solid lines are approximation results. (a) Proposed gradient
method. (b) Ridge regression. (c) LASSO regression.

0.5 1 1.5
0

10

20
 t and Error

0.5 1 1.5
0

1

2
 t and Sparseness

Fig. 3. The effect of control parameter t over mean square error
and sparseness.

heritage and the goal is to decide whether a subject has dia-
betes or not, based on 7 different tests; the Wisconsin breast
cancer (WBC)2, whose goal is to diagnose (benigh/malignant)
based on the results of 9 measurements. In WBC, we re-
moved the cases with missing attributes for simplicity. Ta-
ble 1 shows the results of the proposed classifier on the 5-
fold cross validation experiment. For comparison, we also
include the results of the kernel-based logistic classifier. In
both data sets, the proposed classifier is better. The perfor-
mance is improved partially by setting some decayed kernel
weight to be exact zero.

4. CONCLUSIONS
In this paper, we have formulated the dual problem of the �1

norm based sparse approximation. We show the geometric
relation of the duality and solve the dual �∞ maximization
problem by gradient. The algorithm’s performance is close
to or better than the result of LASSO regression.

2Downloadable at www.ics.uci.edu/ mlearn/MLSummary.html

Table 1. The result of the 5-fold cross-validation.

ROC/No. kernels Pima WBC

Logistic 0.750/200 0.772/455
Proposed classifier 0.965/70 0.980/253
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[4] M.Ã.T. Figueiredo, “Adaptive sparseness for supervised learn-
ing,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 25, no. 9, pp. 1150–1159, 2003.

[5] E. Amaldi and V. Kann, “On the approximibility of minimiz-
ing non zero variables or unsatisfied relations in linear sys-
tems,” Theoretical Computer Science, vol. 209, pp. 237–260,
1998.

[6] D.G̃. Luenverger, Optimization by Vector Space Methods,
John Wiley and Sons, Inc., 1969.

[7] T. Kohonen, Self-organizing Maps, pp. 60–62, Springer-
Verlag, New York, 2001, 3rd edition.

[8] J. Weng and N. Zhang, “A quasi-optimally efficient algo-
rithm for independent component analysis,” in Proc. IEEE Int.
Conf. on Acoustics Speech, and Signal Processing, Montreal,
Canada, 2004.

IV - 648

➡ ➠


