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ABSTRACT

This paper concerns the problem of resolvability power in
the frequency domain. The canonical case of interest is
to distinguish whether the received noise-corrupted signal
is a single-frequency sinusoid or a two-frequency sinusoid,
where the amplitudes, phases and frequencies are unknown
to the receiver. Using a model-based hypothesis testing ap-
proach, we quantify a measure of attainable resolution be-
tween sinusoids with nearby frequencies, in the presence
of noise. An explicit relationship is derived for the mini-
mum detectable difference between the frequencies of two
tones, for any particular false alarm and detection rate, and
at a given SNR. An associated algorithm is proposed that
produces significantly better performance compared to the
standard subspace-based methods like MUSIC and can be
effectively used in practice as a postprocessing step for the
existing spectral estimation methods.

1. INTRODUCTION

Resolving sinusoidal signals with nearby frequencies has
been a very extensively studied problem in array process-
ing. In array processing terms, the problem is related to the
case where two incoherent plane waves are incident upon a
linear equi-spaced array of sensors [1]. The majority of the
past work in this area have been based on the analysis of
the second order statistics which is related to the covariance
structure of the measured signal [2, 3]. At the same time,
a remarkable number of papers have addressed the perfor-
mance analysis of these subspace methods [1, 4, 5, 6, 7, 8].
The subspace methods (e.g. MUSIC) employ the eigen-
decomposition of the estimated autocorrelation matrix into
orthogonal signal and noise subspaces [2].

A very common question addressed in the related liter-
ature has been to investigate the relationship between reso-
lution and SNR. With respect to this question, most of the
relevant papers have focused on the MUSIC algorithm. A
rather similar question interests us in this paper: We present
a quantitative measure of resolution by addressing the fol-
lowing question:”What is the minimum separation between
two nearby tones (maximum attainable resolution) that is
detectable at a given signal-to-noise ratio (SNR), and for

pre-specified probabilities of detection and false alarm (Pd

and Pf )?”.
To begin, let the canonical signal of interest be

s(x; δ1, δ2) = a1 sin (2π(fc − δ1)x + φ1)
+ a2 sin (2π(fc + δ2)x + φ2) (1)

for the range of x ∈ [−B
2 , B

2 ], where we consider the two
frequencies fc − δ1 and fc + δ2 to be around a (known or
estimated) ”center” frequency (fc). The received signal is a
sampled, and noise-corrupted version of (1), i.e.

f(k; δ1, δ2) = s(k; δ1, δ2) + w(k)
= a1 sin (2π (fc − δ1) k/fs + φ1) (2)

+ a2 sin (2π (fc + δ2) k/fs + φ2) + w(k),

where the sampling frequency is fs (Hz), assumed to be
greater than 2(fc + δ2), and the integer index k is in the
range k ∈ {−(N−1)/2, · · · , (N−1)/2}, where N = Bfs.
The term w(k) is assumed to be a zero-mean Gaussian white
noise process with variance σ2.

According to the so-called Rayleigh criterion [4], the
two (equal-amplitude) spectral peaks located at fc − δ1 and
fc + δ2 are unresolvable if δ1 + δ2 < 1

B . In this paper we
are interested in studying this scenario for the signal defined
in (2). In particular, we define the term ”signals with short
observation interval” as the case in which the values of B,
δ1 and δ2 satisfy the above inequality. In this case the main-
lobe of the Fourier transform of the (sum of) two sinusoids
is located in the same FFT bin.

The fundamental premise of our approach is to pose the
problem of resolution as a hypothesis test. Namely, the cor-
responding hypotheses for the model in (2) are{ H0 : δ1 = 0 and δ2 = 0

H1 : δ1 > 0 or δ2 > 0 (3)

where H0 and H1 denote the null hypothesis (one peak is
present) and alternative hypothesis (two peaks are present),
respectively. Since we consider the case where δ1 and δ2

are unknown to the detector, (3) represents a composite (but
one-sided) hypothesis testing problem [9, p. 103].
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The solution we propose for the hypothesis test in (3)
is based upon a locally optimal detection strategy. We as-
sume that the center frequency (fc) is known beforehand
or can be estimated by using one of the existing spectral
estimation methods (see [10] for details). However, we as-
sume that the amplitudes, phases and frequency parameters
(δ1 and δ2) of the sinusoids are unknown to the detector.
We should perhaps emphasize that in the subspace methods,
the phases of sinusoids are assumed to be independent, uni-
formly distributed random variables, whereas we treat them
as unknown deterministic variables.

The foregoing analysis is useful in two respects: first to
develop a locally optimal detection methodology and, sec-
ond, to establish an explicit performance bound (the result
of employing these locally powerful detectors) for the un-
derlying problem. In order to emphasize the practicality of
the results, we compare the proposed algorithm against the
MUSIC algorithm. We demonstrate that the proposed de-
tectors yield significantly improved performance in distin-
guishing frequencies of nearby tones.

The organization of this paper is as follows. In Section
2, we develop our detection strategies and characterize their
performance. Section 3 presents some results and also com-
parisons of the proposed method with the existing subspace
methods. Finally, in Section 4, we conclude the paper by
summarizing the results.

2. DETECTION THEORETIC APPROACH

Since the range of interest for the values of δ1 and δ2 is
small (δ1, δ2 < 1

2B ), (these representing one wide peak in
the frequency domain,) it is quite appropriate for the pur-
poses of our analysis to consider approximating the model
of the signal around (δ1, δ2) = (0, 0). The second order
Taylor expansion of (2) about (δ1, δ2) = (0, 0), with all
other variables fixed, is

s(k; δ1, δ2) ≈ α0p0(k) + β0q0(k) + α1p1(k) + β1q1(k)
+α2p2(k) + β2q2(k) (4)

where

pi(k) = (k/fs)i sin (2πfck/fs)

qi(k) = (k/fs)
i cos (2πfck/fs)

α0 = a1 cos(φ1) + a2 cos(φ2)
β0 = a1 sin(φ1) + a2 sin(φ2)
α1 = 2π(a1δ1 sin(φ1) − a2δ2 sin(φ2))
β1 = 2π(−a1δ1 cos(φ1) + a2δ2 cos(φ2))
α2 = −2π2(a1δ

2
1 cos(φ1) + a2δ

2
2 cos(φ2))

β2 = −2π2(a1δ
2
1 sin(φ1) + a2δ

2
2 sin(φ2)).

We elect to keep terms up to order 2 of the above Taylor
expansion. This gives a more accurate representation of the

signal since in some cases (e.g. a1 = a2, φ1 = φ2, δ1 = δ2)
the first order terms (related to p1(k) and q1(k)) would be
very small or would even vanish. Rewriting (4) in vector
form will result in

s ≈ α0p0 + β0q0 + α1p1 + β1q1 + α2p2 + β2q2 (5)

where for example p1 =
[
p1

(−N−1
2

)
, · · · , p1

(
N−1

2

)]T
.

Now, the hypotheses in (3) appear in the following form:� H0 : z = α0p0 + β0q0 + w
H1 : z = α0p0 + β0q0 + α1p1 + β1q1 + α2p2 + β2q2 + w

where z denotes the approximate measured signal model.
This leads to a linear model for testing the parameter set θ
defined as follows:

z = Hθ + w (6)

H = [p0| q0| p1| q1| p2| q2] (7)

θ = [α0 β0 α1 β1 α2 β2]T (8)

where H and θ are an N × 6 matrix, and a 6 × 1 vector,
respectively. The corresponding hypotheses are{ H0 : Aθ = 0

H1 : Aθ �= 0
(9)

where

A =

⎡
⎢⎢⎣

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎦ . (10)

The hypothesis test in (9) is a problem of detecting a de-
terministic signal with unknown parameters (θ). Since the
probability density function (PDF) under H0 and H1 is not
known exactly, we form the Generalized Likelihood Ratio
Test (GLRT) to obtain the test statistic. GLRT first com-
putes maximum likelihood (ML) estimates of the unknown
parameters, and then will use this estimated value to form
the standard Neyman-Pearson (NP) detector [11, p.186]. The
GLRT for (9) is given by [11, p. 274]

T =
1
σ2

θ̂T AT
[
A

(
HT H

)−1
AT

]−1

Aθ̂ (11)

where θ̂ =
(
HT H

)−1
HT z is the unconstrained maximum

likelihood estimate of θ. For any given data set z, we decide
H1 if the statistic exceeds a specified threshold, T (z) > γ.
The choice of γ is motivated by the level of tolerable false
alarm in a given problem. From (11), the performance of
this detector is characterize by

Pf = Qχ2
4
(γ) (12)

Pd = Qχ
′2
4 (λ)(γ) (13)

λ =
1
σ2

θT AT
[
A

(
HT H

)−1
AT

]−1

Aθ, (14)
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where Qχ2
4

is the right tail probability for a Central Chi-
Squared PDF with 4 degrees of freedom, and Qχ

′2
4 (λ) is

the right tail probability for a non-central Chi-Squared PDF
with 4 degrees of freedom and non-centrality parameter λ.

Now to compute the required SNR for a given separa-
tion, we first compute the value of the non-centrality pa-
rameter (λ(Pf , Pd)) according to the pre-specified Pd and
Pf by using (12) and (13). Then the value of noise variance
can be obtained from (14). Finally, by defining (the output)
SNR as SNR = θT HT Hθ/σ2 and replacing the value of
noise variance from the previous step, the relation between
the parameter set θ and the required SNR will be given by:

SNR = λ(Pf , Pd)
θT HT Hθ

θT AT
[
A

(
HT H

)−1
AT

]−1

Aθ
(15)

To gain further insight, we consider a special case of
the signal model in (2). We assume that a1δ1 ≈ a2δ2,
which results from a proper choice of the center frequency
fc (See [10]) and simultaneously consider the case where
the value of φ1 is close to that of φ2. Consequently after
some algebra, by replacing N

fs
with B and by neglecting

non-dominant terms, (15) for small δ1 and δ2 (i.e. δ1, δ2 �
1
B ) will result in

SNR ≈ 45
π4

λ(Pf , Pd)
B4

a2
1 + a2

2 + 2a1a2

a2
1δ

4
1 + a2

2δ
4
2 + 2a1a2δ2

1δ2
2

(16)

Equation (16) is representing an explicit relationship one
can use to understand the required SNR to achieve a par-
ticular resolution level of interest below the Rayleigh limit.
It is also informative to compute the required SNR for the
case where δ1 = δ2 = δ, a1 = a2 = 1. This yields

SNR ≈ 45
π4

λ(Pf , Pd)
(Bδ)4

(17)

which shows that for the case where the frequencies of the
two sinusoids are symmetrically located about the test point,
the required SNR is proportional to the inverse of the fre-
quency separation to the power of 4.

3. RESULTS

A plot of (16) is shown in Figure 1 for the case of equal
amplitude and for the case of a1 = 4a2 (In either case, the
amplitudes and phases are not known to the detector.). The
case of equal amplitudes produces better detection perfor-
mance, as expected.
As mentioned before, we consider the phases of sinusoids to
be unknown deterministic variables. Whereas for subspace
detectors, the phase is typically assumed to be a uniformly
distributed random variable in [0, 2π]. Also the ”required
SNR” computed in (15) is in general a function of the phases
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Fig. 1. (δ1 + δ2)B vs. required SNR for equal and unequal
amplitudes.

of the sinusoids. Therefore in order to set up a fair compari-
son to subspace methods, we average the required SNR over
the possible range of φ1 and φ2:

SNRavg =
1

4π2

∫ 2π

0

∫ 2π

0

SNR dφ1dφ2 (18)

where subscript ”avg” denotes the averaged value and the
integrand (SNR) is the right hand side of (15).
To compare with subspace methods, we simulated the be-
havior of the MUSIC algorithm for resolving sinusoids with
nearby frequencies. In simulation of MUSIC, the signal is
declared to be resolvable if the output of MUSIC produces
two distinct peaks within an interval around the true fre-
quencies (fc ± δ). The simulations for MUSIC are carried
out for cases in which either a single snapshot, or multiple
snapshots, are available. Naturally, we consider the output
SNR in the latter case as the sum of SNR’s of each snapshot.
We develop two different comparison procedures. First, we
compare the performance of MUSIC with the performance
of the detector in (11), where we assume that the center
frequency fc, at which we perform the hypothesis test, is
known a priori. We have also put forward an alternative
(perhaps more practical) scenario, too. In this scenario,
the center frequency is first estimated by MUSIC and the
proposed detector is then applied, centered at the peak esti-
mated by MUSIC.
The results of these experiments are shown in Figure 2.
First, we observe that the proposed detector significantly
outperforms MUSIC in both cases (using known or esti-
mated center frequency). More interestingly, we see that
the result of the proposed detector with estimated center
frequency (provided by MUSIC) is very close to the per-
formance of the same detector with known center frequency,
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Fig. 2. 2δB vs. required output SNR for the MUSIC algo-
rithm.

the latter representing the ultimate performance bound. This
implies that the MUSIC algorithm does a very promising
job in locating the center frequency, which can then be used
to further refine the spectral estimate using our proposed ap-
proach.

4. CONCLUSION

The problem of interest in this paper has been to carry out a
statistical performance analysis for distinguishing whether
the received signal is a single-tone or a double-tone signal.
We have considered a general case where the amplitudes,
frequencies, and phases of sinusoids are unknown to the de-
tector. We consider the case where the two resulted fre-
quency patterns from the sinusoids fall in the same FFT bin
(i.e. short observation interval for the signal).

By utilizing a global quadratic approximation, we in fact
carried out the analysis in the context of locally optimal de-
tectors, and developed corresponding detection strategies.The
question of limits to resolution has been addressed by for-
mulating the following practical question: ”What is the min-
imum detectable frequency difference between two sinu-
soids at a given signal-to-noise ratio?”

Comparing to existing spectral estimation method, the
proposed detection algorithm produces remarkably improved
detection of nearby frequencies. As for implementation, a
test point candidate for the detector can be first identified by
one of the existing spectral estimation methods and then the
suggested detector can be applied as a post-processing stage
to gain better resolution. The application of such a detector,
which uses (for example) MUSIC to estimate the center fre-
quency as the test point, is nearly as effective as applying
the proposed detector with a known center frequency.
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