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ABSTRACT

Subband-based eigenstructure method for bearing estima-
tion is suggested in [1] and [2], while both methods require
a mapping back manipulation after the subband frequency
is estimated. In this paper, we propose a non-mapping back
method to estimate the fullband bearings in the subband do-
main. The proposed method enhances the signal energy and
reduces the root mean square error (RMSE). Simulations re-
sults show the decorrelation capability of coherent sources
with appropriate subband division.

1. INTRODUCTION

Recently, most multiple source detection techniques in ar-
ray processing are based on the eigenstructure decomposi-
tion of the covariance matrix. Among them, ESPRIT [3]
has been widely used for Direction-of-Arrival (DOA) esti-
mation, harmonic analysis, frequency estimation, delay es-
timation, and the combinations thereof. ESPRIT has ad-
vantages over another widely used multiple signal classifi-
cation (MUSIC) [4] method because, compared to MUSIC,
ESPRIT requires lower computational burden by exploit-
ing the rotational invariance between two subarrays. How-
ever, ESPRIT experiences significant performance degrada-
tion when the signal-to-noise ratio (SNR) is low. The per-
formance becomes even poorer when coherent signals imp-
ing.

On the other hand, subband-based method for array pro-
cessing has been studied by many researchers. In particu-
lar, [1], [2] examined the subband partitioning of the spa-
tial frequencies in array processing for enhanced DOA es-
timation. A subband-based ESPRIT (SB-ESPRIT) method
is proposed in [2] which makes use of the fascinating fea-
tures of subband signal processing, such as the lower mini-
mum prediction error, closer entropy rate to the source, and
improved whiteness of signals [5]. When coherent signals
imping, SB-ESPRIT can decorrelate them by decomposing
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them into different subbands. The SB-ESPRIT, in essence,
is a beamspace approach [6, 7].

However, SB-ESPRIT has two major problems related
to its implementation and performance. First, the method
requires a procedure to mapping the subband spatial fre-
quency back to the fullband. This manipulation is necessary
because of the widening of the spatial frequency spacing
[8]. Second, the reduction of computational load in the sin-
gular value decomposition (SVD) is achieved at the expense
of compromising the output SNR.

In this paper, we propose a modified SB-ESPRIT algo-
rithm for DOA estimation. The proposed method is based
on the pre-expansion of the sensor array such that the map-
ping back manipulation after the estimation of bearings is
no longer required. The modified SB-ESPRIT first expands
the array, and then uses SB-ESPRIT to decompose the full-
band signal into several subbands. The combination of ES-
PRIT estimations at each subbands yields the fullband bear-
ings, which is guaranteed by the pre-expansion of the array.
The rotational invariance of our proposed method is proven.

2. DATA MODEL

Consider a uniform linear array (ULA) with K isotropic
sensors spaced by a distance d. D (D < K) narrowband
plane waves imping from the far-field with the same center
frequency ω0. The bearings of the D signals are denoted
as θ1, θ2, · · · , θD. The received data sampled at the k-th
sensor can be expressed as

xk(n) =
D∑

i=1

si(n)e−jω0(k−1) sin θid/c + wk(n). (1)

In matrix form, we have

x(n) = As(n) + w(n), (2)

where x(n), s(n), and w(n) denote respectively the K × 1
received data vector, the D × 1 wavefront vector, and the
K × 1 additive noise vector. Define ωi = ω0 sin θid/c as
the equivalent spatial frequency of the i-th wavefront. Then,
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the mixing matrix A ∈ CK×D can be expressed as

A(ω) = [a(ω1),a(ω2), · · · ,a(ωD)] (3)

where a(ωi) = [1, e−jωi , · · · , e−j(K−1)ωi ]T denotes the
steering vector corresponding to the spatial frequency ωi,
and superscript T denotes transpose. (1) can be rewritten as

xk(n) =
D∑

i=1

si(n)e−j(k−1)ωi + wk(n), (4)

where si(n) = |si(n)|e−jφi is the complex source wave-
form, where the phase φi is uniformly distributed over [0, 2π).
Assume that the signals are zero mean wide sense stationary
(WSS) processes, and wk(n) is the zero mean white Gauss
noise (WGN) which is uncorrelated to the signals and has
identical variance σ2 in each sensor. Then the output co-
variance matrix is given by

Rxx = ARssAH + σ2IK , (5)

where Rss denotes the source covariance matrix and IK is a
K×K identity matrix, and superscript H denotes conjugate
transpose.

By selecting d ≤ λ/2 in the array, the aliasing of the
spatial spectrum can be prevented.

3. SUBBAND-BASED ESPRIT

The idea of SB-ESPRIT is to first partition the measured
data into several subbands and then apply the ESPRIT al-
gorithm to each subband. For the convenience of analy-
sis, we define two matrices H and G, both of dimension
Nf × K, to filter the measured data, described in (2), into
a low frequency subband and a high frequency subband,
where Nf = �(K+Nd)/2�−1 with Nd denoting the length
of filter and �y� denoting the largest integer not exceeding
y. The output of the two filters are formulated by

xh(n) = HAs(n) + wh(n) (6)

and

xg(n) = GAs(n) + wg(n). (7)

where xh(n) and xg(n), both of Nf × 1, are referred to as
the low frequency and high frequency data vectors. Each of
them can be used to compose two subarrays. Take xh(n) for
example. We choose its 1st to (Nf − 1)th rows to form the
vector x1

h(n) corresponding to the first subarray, whereas
its 2nd to Nf th rows are used to form vector x2

h(n) corre-
sponding to the second subarray.

For simplicity, we choose Haar wavelets as the analysis
filters and assume K is even so that K/2 is an integer. The

1-level lowpass and highpass filtering matrices H and G are
given respectively by

H = c ·

⎡
⎢⎢⎢⎣
J2 O2 · · · O2

O2 J2 · · · O2

...
...

. . .
...

O2 O2 · · · J2

⎤
⎥⎥⎥⎦ ∈ RK/2×K (8)

and

G = c ·

⎡
⎢⎢⎢⎣
K2 O2 · · · O2

O2 K2 · · · O2

...
...

. . .
...

O2 O2 · · · K2

⎤
⎥⎥⎥⎦ ∈ RK/2×K , (9)

where J2 = [1, 1], K2 = [1,−1], O2 = [0, 0], and c =
1/
√

2.
Next we exploit the rotational invariance between sub-

arrays. Denote

Ã = HA =
[
ã1 ã2 · · · ãD

]
(10)

as the K/2 × D mixing matrix at the high frequency sub-

band, where ãi =
(
1 + e−jωi

) [
1, e−j2ωi , · · · , e−j(K−2)ωi

]T
.

Then, (6) can be rewritten as

xh(n) = Ãs(n) + wh(n). (11)

If the first subarray consists of the 1st to the (K/2 −
1)th sensors and the second subarray consists of the 2nd
to the K/2th sensors, the mixing matrices Ã1 and Ã2 of
two subarrays can then be related by a diagonal matrix Φ,
i.e., Ã2 = Ã1Φ, where Φ is the rotational invariance in the
subband signals, given by

Φ = diag{e−j2ω1 , e−j2ω2 , · · · , e−j2ωD}. (12)

The rotational invariance property between two subarrays
is evident because they undergo the same lowpass filter-
ing. Same can be said for the subarrays corresponding to
the high frequency subband. By exploiting the diagonal
elements of Φ using conventional ESPRIT, we can obtain
the spatial frequency ω̃l,m in the subbands without knowing
the mixing matrix Ã1, where ω̃l,m means the subband fre-
quency obtained at the lth-level and mth-node. So the valid-
ity of SB-ESPRIT is shown with a 1-level Haar wavelet de-
composition. The extension to an any-level any-type wavelet
decomposition is straightforward. Note that the subband
frequency is amplified in Φ, which accords with the superi-
ority of frequency widening.

To obtain the fullband frequencies, we need to map the
frequencies from subbands back to the fullband. We map
the frequencies as follows

ωfb =

⎧⎪⎨
⎪⎩

ω̃l,m + (m − 1)πsgn(ω̃l,m)
2l

, m = 1, 3, 5, · · ·
ω̃l,m − mπsgn(ω̃l,m)

2l
, m = 2, 4, 6, · · ·

(13)
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where sgn(ω̃l,m) denotes the sign of ω̃l,m. Then it is easy
to obtain the DOAs from

θi = arcsin
{

ωi,fb · c
ω0 · d

}
= arcsin

{
ωi,fb · λ

d

}
. (14)

4. PROPOSED NON-MAPPING BACK APPROACH

Because the spatial frequency spacing is widened in each-
level decomposition [8], we need to map the frequency in
the subband back to the fullband by using (13). Here, we
propose a pre-expansion method to circumvent this proce-
dure. Take the Haar wavelet as an example, the distance
between sensors is doubled after each level of decomposi-
tion, which is the key principle for multiresolution estima-
tion of the signal [9]. It is the spatial widening property
that requires the mapping back manipulation (13). The idea
of pre-expansion method is to modify the received matrix
before it is input to the wavelet filters. The pre-expansion
matrix P is defined as following,

P =

⎡
⎣1

P̃
1

⎤
⎦ ∈ RKp×K (15)

where Kp = 2(K − 1) is the number of virtual expanded
array and P̃ is given by

P̃ =

⎡
⎢⎢⎢⎣
J2 O2 · · · O2

O2 J2 · · · O2

...
...

. . .
...

O2 O2 · · · J2

⎤
⎥⎥⎥⎦

T

∈ R(2K−4)×(K−2).

Expanding (2) with (15) yields

xp(n) = PAs(n) + wp(n). (16)

It is easy to verify that wp(n) is also WGN with vari-
ance σ2. SB-ESPRIT can also be applied to the expansion
matrix, while we should prove the rotational variance after
expanding and filtering the matrix.

Suppose we filter xp(n) with a lowpass Harr filter H ∈
R(K−1)×2(K−1)as in (6). We obtain

xph(n) = Ǎs(n) + wph(n) (17)

where Ǎ = HPA denotes the (K−1)×D subband matrix

Ǎ =
[
ǎ1 ǎ2 · · · ǎD

]
(18)

with ǎi = [1 + e−jωi , e−jωi + e−j2ωi , · · · , e−j(K−2)ωi +
e−j(K−1)ωi ]T.

Let the first subarray consist of the 1st to (K − 2)th
sensors and the second subarray consist of those from 2nd

to (K − 1)th. The rotational invariance still holds between
the subband mixing matrices Ǎ1 and Ǎ2, given by

Φ̌ = diag{e−jω1 , e−jω2 , · · · , e−jωD} (19)

which is the same to the conventional ESPRIT and does
not require mapping back manipulation after the subband
frequency is estimated. Our proposed non-mapping back
method can also be easily implemented by adding a step
called pre-expansion before applying SB-ESPRIT algorithm.

The applicability of SB-ESPRIT in coherent signals sce-
nario is not to decorrelate the coherent signals by averaging
the subarray autocorrelation matrix, but to decompose them
into different subbands. Given ideal bandpass filters and ap-
propriate division schedule, decorrelation is realized.

5. SIMULATIONS

In this section, we provide computer simulations to evalu-
ate and compare the performance of conventional ESPRIT,
subband-based ESPRIT (SB-ESPRIT), and modified SB-
ESPRIT. Both simulations are carried out for a ULA of
K = 32 isotropic sensors with half wavelength (d = λ/2)
interelement spacing. Four sources emit narrowband signals
with the same power from 10◦, 20◦, 60◦ and 70◦. Among
them, the two signals from 10◦ and 60◦ are coherent. N =
100 snapshots are taken and the Haar wavelet packets are
chosen as the subband decomposition filters. We use the
Monte-Carlo method to obtain 100 independent runs for
each example. Fig. 1 shows the performance at a low SNR =
−13 dB. It is evident from Fig. 1(a) that the conventional
ESPRIT fails to resolve the coherent signals from 10◦ and
60◦, whereas Fig. 1(b) and Fig. 1(c) show that both SB-
ESPRIT and our proposed method resolve the four sources.
It is also noted that the output power of modified SB-ESPRIT
is obvious stronger than that of SB-ESPRIT. Fig. 2 shows
the resulting root mean square error (RMSE) of the esti-
mated DOAs as a function of SNR. SB-ESPRIT and modi-
fied SB-ESPRIT algorithm outperform ESPRIT especially
in low SNR for their ability of dividing coherent signals
into different subbands. The RMSE of the subband-based
methods, which include the SB-ESPRIT and our proposed
method, is significantly lower than that of conventional ES-
PRIT, especially when the SNR is high. In this case, the per-
formance of modified SB-ESPRIT and that of SB-ESPRIT
become very close.

6. CONCLUDING REMARKS

In this paper, a modified subband-based ESPRIT (SB-ESP-
RIT) algorithm has been proposed which does not require
the mapping back manipulation after the bearings are es-
timated. The modified SB-ESPRIT estimates the spatial
frequencies by pre-expanding the array and then applying
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(a) ESPRIT
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(b) SB-ESPRIT
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(c) Modified SB-ESPRIT

Fig. 1. DOA Estimation for two coherent signals from 10◦ and 60◦, and two incoherent signals from 20◦ and 70◦ with
SNR = −10 dB and 100 trial runs.

SB-ESPRIT to the expanded data matrices. As the rota-
tional invariance still holds, an ESPRIT estimation of each
subband yields the fullband bearings. Simulation results
have shown that the modified SB-ESPRIT outperforms both
conventional ESPRIT and SB-ESPRIT, especially in low
SNR scenarios. The root mean square error of the proposed
method is much lower than that of ESPRIT and is close to
SB-ESPRIT. The output energy of modified SB-ESPRIT is
also enhanced.
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Fig. 2. RMSE of the estimated DOAs as a function of SNR
for θ = 10◦, 20◦, 60◦, and 70◦.
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