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ABSTRACT

We build a multiresolution analysis based on shift-invariant
exponential B-spline spaces. We construct the basis func-
tions for these spaces and for their orthogonal complements.
This yields a new family of wavelet-like basis functions of
L2, with some remarkable properties. The wavelets, which
are characterized by a set of poles and zeros, have an ex-
plicit analytical form (exponential spline). They are non-
stationary is the sense that they are scale-dependent and that
they are not necessarily the dilates of one another. They
behave like multi-scale versions of some underlying differ-
ential operator L; in particular, they are orthogonal to the
exponentials that are in the null space of L. The correspond-
ing wavelet transforms are implemented efficiently using an
adaptation of Mallat’s filterbank algorithm.

1. INTRODUCTION

During the past decade, the wavelet transform has become
an essential tool in signal processing [1]. It is ideally suited
for the processing of piecewise smooth signals because of
the special way in which the basis functions (wavelets) in-
teract with polynomials (vanishing moment property). The
polynomial reproduction properties of the scaling function
are also intimately linked to the crucial notion of approxi-
mation order. As the polynomials are carried only by the
lowest part of the spectrum, the wavelet transform works
best for signals whose energy is predominant at low fre-
quencies. It is then natural to ask whether or not one can
produce basis functions that are well suited to the represen-
tation of signals that are not necessarily lowpass; in partic-
ular, to those containing natural resonances. One solution,
which is the one that we are developing here, is to substitute
the polynomials of the classical wavelet theory by exponen-
tials or even by sinusoids.

All the polynomial-related properties of wavelets have
been traced back to the presence of the polynomial B-spline
that lies hidden within [2]. If one transposes the argument
to exponentials, one naturally hits upon the exponential B-
splines which, as their name may suggest, reconstruct expo-
nentials perfectly [3]. These functions constitute the build-
ing blocks of our present wavelet design. They generate
a generalized multiresolution analysis, in the sense defined

by de Boor, DeVore, and Ron [4], that is non-stationary; in
other words, it has all the usual properties, except that the
basis functions at different scales are no longer dilates of
each other.

The goal of the present work is to construct and charac-
terize the wavelets that arise from the exponential B-spline
multiresolution analysis (Sections 2 and 3), to study their
properties (Section 4), to describe the fast decomposition/re-
construction algorithm (Section 5), and to present a few ex-
amples to illustrate their versatility (Section 6).

2. E-SPLINE MULTIRESOLUTION

Consider a linear differential system given by

DNy + aN−1DN−1y + · · · + a0y =

DMx+ bM−1DM−1x+ · · · + b0x,

where x(t) is the input signal, y(t) is the system output,
M < N . Let �α = {αn}N

n=1 and �γ = {γm}M
m=1 be the

roots of the polynomials sN + aN−1s
N−1 + · · · + a0 and

sM + bM−1s
M−1 + · · · + b0, respectively. We denote L =

L�α,�γ the corresponding operator, such that Ly = x. The
Green function ρ(t) = ρ�α,�γ(t) of the system is causal and
satisfies Lρ = δ, where δ denotes the Dirac impulse; ρ is
given by

ρ(t) = L−1

{
ΠM

m=1(· − γm)
ΠN

n=1(· − αn)

}
(t)

and can be determined by explicitly computing the inverse
Laplace transform. We call the spline-defining parameters,
{αn}N

n=1 and {γm}M
m=1, the poles and the zeros, respec-

tively.
A generalized E-spline with vector of poles �α, vector of

zeros �γ and equally spaced knots tk = Tk is a function that
satisfies [3]

Ls(t) =
∑
k∈Z

a[k]δ(t− Tk).

By applying the inverse operator L−1, we get

s(t) =
∑
k∈Z

a[k]ρ(t− Tk) + p(t),
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where p(t) is a solution of the homogeneous equationL{p} =
0. In the case of uniform sampling, p(t) can be reproduced
by {ρ(·−Tk)}k∈Z. Consequently, {ρ(·−Tk)}k∈Z is a basis
of the E-spline space.

An exponential B-spline βT (t) is defined by βT (t) =
∆�α,T ρ(t), where ∆�α,T = T (∆(α1),T ∗· · ·∗∆(αn),T ) is a lo-
calization operator with ∆(αi),T f(t) = 1

T (f(t)−eαiT f(t−
T )). The localization process for the first-order case (�α =
{α0}, �γ = ∅) is illustrated in Figure 1; the Green function,
which is a causal exponential, is truncated by subtracting its
weighted and shifted version.
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1

Fig. 1. Localization of the Green function for T = 1.

The B-spline βT (t) is supported in [0, TN). Its Fourier
transform is given by

β̂T (ω) =
1

TN−1

N∏
k=1

1 − eT (α−jω)

(jω − αk)

M∏
l=1

(jω − γl).

We assume the stability condition αl − αm �= 2πkj/T
for all distinct pure imaginary roots αl, αm. In this case,
{βT (· − Tk)}k∈Z forms a Riesz basis [3, Theorem 1]. In
addition, the Green function can be reconstructed as

ρ(t) =
+∞∑
k=0

pT [k]βT (t− Tk),

where pT [k] are some suitable weights [3]. Together with
βT ∈ span{ρ(·−Tk)}k∈Z, this ensures that the exponential
B-splines form a complete basis of the E-spline space.

We now consider the dyadic scales T = 2i and define
V(i) as

V(i) = {si =
∑
k∈Z

ckρ(· − 2ik)} ∩ L2,

where the ck’s are arbitrary coefficients.
Due to the mentioned equivalence of bases, we can also

write

V(i) = {si(t) =
∑
k∈Z

ckϕi(t− 2ik) : c ∈ l2},

where ϕi(t) = β2i(t)/||β2i ||L2 is the normalized scaling
function.

(localization)∆T

L

(Green function 
reproduction) ∆−1

T

VT = span{βT (· − Tk)}

VT = span{ρ(· − Tk)}

LVT = span{δ(· − Tk)}

H = L−1

Fig. 2. E-spline space-construction process

We give in Figure 2 a diagram that summarizes the con-
struction of the E-spline spaces.

The space V(i) is included in V(i−1) by construction. We
therefore have a ladder of spaces

· · · ⊂ V(i+1) ⊂ V(i) ⊂ V(i−1) ⊂ . . .

and we can prove that
⋃
V(i) is dense in L2 [5].

3. MULTIRESOLUTION BASIS FUNCTIONS

The function ϕi+1 ∈ V(i+1) ⊂ V(i) can be decomposed as

ϕi+1(t) =
∑

k

hi[k]ϕi(t− 2ik),

which readily provides the explicit expression for the scal-
ing filter

Hi(ej2iω) =
ϕ̂i+1(ω)
ϕ̂i(ω)

= 2
ci
ci+1

·
N∏

k=1

1 + e2
i(αk−jω)

2
,

where ci = ||βi||L2 is a normalizing constant.
The dual scaling function is defined by

ˆ̃ϕi(ω) = ϕ̂i(ω)/Ai(ej2iω),

withAi(ej2iω) =
∑

k∈Z
ai[k]e−j2iωk = 2−i

∑
k∈Z

|ϕ̂i(ω+
2πk/2i)|2, where ai[k] = 〈ϕi(·), ϕi(·−2ik)〉 is the Gram—
or autocorrelation—sequence of the basis {ϕi(t−2ik)}k∈Z.
Ai(z), the z-transform of ai[k], is also referred to as the au-
tocorrelation filter.

It can be proved that {ϕ̃i(· − 2ik)}is a Riesz basis of
V(i) [5]. The dual scaling filter is then obtained as

H̃i(z) =
Ai(z)

Ai+1(z2)
Hi(z),
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and the dual two-scale relation is

ϕ̃i+1(t) =
∑

k

h̃i[k]ϕ̃i(t− 2ik).

The wavelet function

ψi+1(t) =
∑

k

gi[k]ϕi(t− 2ik)

is obtained by solving for gi[k] the orthogonality relation

〈ψi+1(·), ϕi+1(· − 2i+1k)〉 = 0.

The general solution is given by

Gi(z) = −zQi(z2)H∗
i (−z−1)Ai(−z),

where the filter Qi(z) must be chosen to be bounded and
non-vanishing on the unit circle [5]. By imposing the perfect-
reconstruction condition, we get as well the dual scaling fil-
ter

G̃i(z) = −z H̃∗
i (−z−1)

Ai(−z)Q∗
i (z−2)

,

where g̃i[k] are the coefficients in the dual wavelet relation

ψ̃i+1(t) =
∑

k

g̃i[k]ϕ̃i(t− 2ik).

The constructed scaling functions and wavelets at each scale
i belong to the spaceCN−M−2. The scaling and the wavelet
filters are either FIR (B-spline case) or IIR with exponential
decay (dual case). Thus, the basis functions are either com-
pactly supported, or exponentially decaying. They can also
be orthogonalized to yield orthonormal wavelets.

4. PROPERTIES

The new wavelet bases have the following remarkable prop-
erties, which may be useful in signal-processing applica-
tions:

Property 1 (Reproduction of exponential polynomials). Sup-
pose that �α contains a root α0 of multiplicity m. Then, for
n = 0, . . . ,m− 1 the exponential monomial tneα0t has the
B-spline representation

tneα0t =
∑
k∈Z

p�α,i,n[k]β�α,�γ,2i(t− 2ik),

where p�α,i,n[k] are suitable coefficients.

For the arbitrary parameter vector �α consisting of Nd

distinct roots of multiplicity mk, k = 1, . . . , Nd, the direct
corollary is that the exponential polynomials

p�α(t) =
Nd∑
k=1

mk−1∑
n=0

ckt
neαkt

that constitute the null space N�α of the operator L can be
reproduced with the corresponding B-splines.

Property 2 (Vanishing exponential moments). For each scale
i ∈ Z, shift t0 ∈ R, and degree n = 0, . . . ,mk − 1, the
analysis wavelet satisfies∫ ∞

−∞
tneαktψi(t− t0)dt = 0,

wheremk is the multiplicity of αk. In other words, the anal-
ysis wavelet ψi has N vanishing exponential moments that
correspond to the basis functions of the null space of L.

Property 3 (Operator-like wavelets). Let {ψi,k}i,k∈Z be
an E-spline wavelet basis of L2. Then, there exists a se-
quence {φi}i∈Z of E-spline scaling functions of order 2N
such that 〈f, ψ̃i(· − t0)〉 = L{f ∗ φi}(t0); in addition,
{φi}i∈Z generates a multiresolution analysis of L2. The
wavelet coefficients of f are therefore the samples of the
smoothed versions of L�α,�γf .

5. IMPLEMENTATION

To perform the decomposition and the reconstruction in the
new bases, we use an adapted version of the fast Mallat’s
filterbank algorithm with scale-dependent filters. The fil-
ters Gi(z),Hi(z), G̃i(z), H̃i(z) should be pre-calculated at
each scale according to the formulas presented in Section 3.

In order to initialize the decomposition, we need to ob-
tain the initial projection coefficients c[k] such that f(k0) =∑

k∈Z
c[k]ϕ0(k0 − k), as well as the autocorrelation filter

A0(z). The c[k]’s can be obtained by prefiltering the func-

tion samples with P (z) = (
∑

k ϕ0(k)z−k)−1
. Both P (z)

and A0(z) can be calculated by applying fractional differ-
ences to the samples of the Green function ρ. The explicit
formula for ρ(t) is obtained by performing a partial-fraction
decomposition in the Laplace domain [5].
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(a) Wavelet ψ1, i = 1
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(b) Wavelet ψ2, i = 2

Fig. 3. Wavelets at scales i = 1, i = 2; �α =
(− 5π

8 j,− 5π
8 j,

5π
8 j,

5π
8 j, 0, 0), �γ = (−5j, 5j).

6. EXAMPLES

To illustrate the variety of time-domain and spectral shapes
that can be achieved with this construction, we choose the
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parameters �α = (− 5π
8 j,− 5π

8 j,
5π
8 j,

5π
8 j, 0, 0) and �γ =

(−5j, 5j) to be pure imaginary and to have Hermitian sym-
metry, which ensures that the time-domain functions are
real. In Figure 3, we show the wavelets ψ1 and ψ2 in the
time domain; these have a strong oscillatory character, with
a larger number of lobes as the scale gets coarser. It is
clearly apparent that ψ2 is not a dilate of ψ1.

The plots in Figure 4 show the effect of the poles �α and
of the zeros �γ on the frequency response. In Figure 4(a), the
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(a) Scaling-function spec-
trum |ϕ̂1(ω)|, i = 1

6 4 2 0 2 4 6
0

0.5

1

1.5

2

2.5

(b) Wavelet spectrum
|ψ̂1(ω)|, i = 1

Fig. 4. The spectrum of the scaling function and the spec-
trum of the wavelet; �α = (− 5π

8 j,− 5π
8 j,

5π
8 j,

5π
8 j, 0, 0),

�γ = (−5j, 5j).

pole α1 = − 5π
8 j produces a peak of the scaling-function

spectrum near ω = − 5π
8 j and makes it vanish with period-

icity π. There is also a peak at the origin because of the pole
at ω = 0. The zero γ1 = −5j makes the frequency response
vanish at ω = −5. In contrast, the wavelet spectrum (Fig-
ure 4(b)) vanishes at jω = αl, as a result of the vanishing
exponential moment and of the linear-differential-operator
properties of E-spline wavelets.

7. CONCLUSION

We have introduced a general procedure for constructing
new exponential-spline wavelet-like bases of L2. Similar to
analog filters, the multiresolution spaces are characterized
by a set of poles and zeros. The wavelets come in differ-
ent flavors: basic (B-spline), dual, and orthonormal. They
have the ability to kill exponential polynomials, which gen-
eralizes the notion of vanishing moment found in the con-
ventional wavelet theory. More importantly, they essentially
behave like multiscale versions of some underlying operator
L. One recovers the polynomial B-spline case by choosing
the parameter �α = (0, . . . , 0), where the corresponding op-
erator is the N -th derivative.

The constructed wavelets are not dilates of a single func-
tion anymore; however, they still can be implemented using
a scale-dependent version of Mallat’s fast filterbank algo-
rithm.

The proposed framework should be of interest for signal-
processing applications. It might be well-suited for repre-
senting signals that are not predominantly lowpass but that
have substantial energy in other frequency bands. In partic-
ular, it offers the possibility of adapting the model to a given
class of signals, by the way of selecting roots that fit natural
resonances in the data.
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