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ABSTRACT

This paper addresses the design of wavelets adapted to the
processed signals and the considered application. Our ap-
proach consists of parameterizing a mother wavelet, and
defining a quality criterion for the optimization of the pa-
rameters, according to the context. The first parameteri-
zation, leading to orthogonal wavelets, considers the coef-
ficients of the scaling filter as the parameters. A second
parameterization, leading to semiorthogonal wavelets, con-
sists of convolving an existing wavelet (or scaling function)
by a given sequence. In this paper, we explore these two
methods and apply them to the supervised classification of
signals made of waveform trains.

1. INTRODUCTION

Selecting a mother wavelet for a given problem is a delicate
issue. Instead of choosing a wavelet from a catalogue more
or less arbitrarily, an alternative approach consists of defin-
ing a general framework that enables principled wavelet se-
lection. Such a framework needs to include 1) a family of
wavelets that may depend on unknown parameters and 2) a
quality criterion, written according to the context, to be used
to perform wavelet selection (i.e., wavelet parameters opti-
mization). Formally, this consists of solving a parametric
optimization problem under wavelet admissibility (and pos-
sibly regularity) constraints. This general framework can be
applied to problems such as signal compression, classifica-
tion or detection, where wavelets can be relevant tools.

Concerning point 1), we focus on two methods to pa-
rameterize discrete wavelet bases, driven by the Multireso-
lution Analysis (MRA) framework. Actually MRA allows
for perfect reconstruction with fast algorithms and param-
eterization of the mother wavelet. The first wavelet design
scheme directly considers the coefficients of the decomposi-
tion filters (to be used in the Mallat’s pyramidal algorithm)
as the parameters. The second method builds on a work
by Abry et al. [1, 2] where it is shown that convolving an
existing wavelet (or scaling function) with an admissible se-
quence provides a new wavelet associated to the same origi-
nal MRA. Here, the parameters are the convolving sequence

coefficients. Of course we can initialize the second method
with the resulting wavelet of the first one.

The following step of the design process, point 2), is
the optimization of the parameters w.r.t. a quality criterion.
This criterion must be defined according to the context, that
is the key point: it determinates the ability of the design
methods to provide a mother wavelet adapted to the consid-
ered problem. This paper is motivated by a supervised clas-
sification problem: a natural quality criterion is the proba-
bility of classification error estimated on a training set (reg-
ularized risk). Signals are made of waveform trains (as en-
countered, e.g., in medical diagnosis based on electromyog-
raphy) with unknown shapes repeating with unknown scales
and occurrence instants. Each class corresponds to one type
of the waveforms characterizing the signals. The feature
space is thus built from the decomposition of the signals on
a dyadic wavelet basis. We describe the way to choose an
optimal mother wavelet for this basis.

This paper is organized as follows. Section 2 addresses
the two methods to parameterize the mother wavelet. In sec-
tion 3, we describe the quality criterion and the classifica-
tion process. Section 4 shows a toy example of application
of the method.

2. TWO WAYS OF PARAMETERIZING
THE MOTHER WAVELET

In this section, we present two methods to parameterize the
mother wavelet, within the multiresolution analysis (MRA)
framework. We denote θ the design parameter vector.

The MRA framework allows to define a scaling func-
tion φ and its associated wavelet ψ from two filters h and
g thanks to the two-scale recursive relations : φ(t/2) =√

2
∑

n h[n]φ(t − n) and ψ(t/2) =
√

2
∑

n g[n]φ(t − n).

2.1. Orthogonal wavelets: parameterization of h

In the case of orthogonal wavelets, g can be deduced from
h: g[n] = (−1)nh[1−n]. Consequenty, by restricting to the
orthogonal case, we only need the scaling filter h to define
ψ. However, to generate an orthogonal MRA wavelet, h
must satisfy some conditions. For a FIR filter of length Lh,
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there are Lh/2 + 1 sufficient conditions to ensure the exis-
tence and orthogonality of the scaling function and wavelets
[4, 5]. There remains Lh/2− 1 degrees of freedom that can
be used to design the filter h.

The lattice parameterization described in [7] offers the
opportunity to design h via unconstrained optimization: the
Lh coefficients of h can be expressed in term of Lh/2 − 1
new free parameters. For instance, if Lh = 6, we need a 2
component design vector, θ = [α, β], and h is given by:

i = 0, 1 : h[i] = 4
√

2[(1 + (−1)i cos α + sin α)(1−
(−1)i cos β − sin β) + (−1)i2 sinβ cos α]

i = 2, 3 : h[i] = 2
√

2[1 + cos(α − β) + (−1)i sin(α − β)]
i = 4, 5 : h[i] = 1/

√
2 − h(i − 4) − h(i − 2)

For other values of Lh, expressions of h are given in [3, 6].

2.2. Semiorthogonal wavelets: wavelet linear combina-
tion

The second method starts from a given wavelet and builds
a new wavelet by linear combination [1, 2]. The design pa-
rameters are the coefficients of the linear combination w.r.t.
admissibility conditions.

Let ψo be the given original mother wavelet associated
to an orthogonal or semiorthogonal MRA, with ho and go

its scaling and wavelet filters. We define a new wavelet ψ
depending on a design admissible sequence p by:

ψ = p ∗ ψo (1)

The sequence p is admissible iff its Fourier transform p̂(f)
satisfies:

A ≤ ess-inf
f∈[0,1/2]

|p̂(f)| ≤ ess-sup
f∈[0,1/2]

|p̂(f)| ≤ B (2)

with constants A, B > 0 [2]. Eq. (1) corresponds to a
change of basis in the wavelet spaces. Consequently the ap-
proximation and wavelet spaces of the multiresolution are
not changed (they remain orthogonal if they were), but an
orthogonal wavelet ψo may lead to a semiorthogonal wavelet
ψ (i.e., the bases of the spaces are modified and may not be
orthogonal anymore).

The filters associated to ψ are now:

h = ho

g = ↑2 [p] ∗ go (3)

where ho and go are the filters associated to the original
wavelet ψo. ↑2 stands for upsampling by 2 ( i.e., (↑2 [x])(k) =
x(k/2) if k is even, (↑2 [x])(k) = 0 if k is odd).

Here we need an existing MRA wavelet to initialize the
method. The tuning parameters of ψ are the coefficients of
the admissible sequence p. Thus the choice of the length Lp

of p leads to the choice of the number of parameters to be
optimized.

For our application, we chose to optimize a symmetrical
sequence p of length Lp = 3:

p = [α 1 α] (4)

in order to have only one component parameter vector: θ =
[α]. In this case, we can easily write an analytic condition
to satisfy the admissibility constraint (2): |α| < 1

2 .

3. SUPERVISED CLASSIFICATION

We apply this design framework to a supervised classifica-
tion problem of signals made of waveform trains. In this
section, we present the feature space, derived from the Dis-
crete dyadic Wavelet Transform (DWT). Then we define the
decision rule and the quality criterion allowing to select the
best parameters for the mother wavelet

3.1. Feature space

Given a mother wavelet ψ, the DWT decomposes the signal
x(t) on the corresponding discrete wavelet basis, where all
the wavelets are dilated and translated versions of ψ. It pro-
vides a set of coefficients dx(j, k) = 〈x(t), ψj,k(t)〉 where
ψj,k(t) = 2−j/2ψ(2−jt − k). The N coefficients dx(j, k)
of the decomposition of a discrete signal x of length N are
computed by Mallat’s pyramidal algorithm.

In order to make the representation space insensitive to
the waveforms occurrence instants, we use the marginals of
each level of the decomposition as the signals’ features. We
define the normalized marginals of the DWT by:

mx(j) =
N/2j−1∑

k=0

cx(j, k), j = 1, .., J (5)

cx(j, k) =
|dx(j, k)|∑J

j=1

∑N/2j−1
k=0 |dx(j, k)|

(6)

where J is the deepest level of the decomposition (J =
�log2(N)�). The features representing the signal x are the
components of the vector Mx = [mx(1), .., mx(J)]. The
vector Mx contains information on the distribution of the
wavelet coefficients over J bands. It allows to represent
the signal by the contributions of each frequency band (de-
rived from a dyadic scale) computed with a chosen analyz-
ing wave. Instead of offering this choice, a Fourier trans-
form imposes sine waves.

3.2. Decision rule

Consider a two-class problem. The training set is splitted in
ωa and ωb. We use the decision rule of the nearest repre-
sentative briefly recalled: let Ra (Rb) the representative of

IV - 618

➡ ➡



ωa (ωb), i.e. the average of Mx, x lying in ωa (ωb). Define

a distance in the feature space, denoted d(Mx,My), and an
assigning variable f(x) = d(Mx, Ra) − d(Mx, Rb). Then
the decision rule writes:

Assign x to "ωa" ("ωb") if f(x) < 0 (f(x) > 0)

As the normalization (6) ensures:{
mx(j) ≥ 0, j = 1, .., J∑J

j=1 mx(j) = 1

we can use a Kullback distance for d(Mx,My):

d(Mx,My) =
J∑

j=1

[
mx(j)log

mx(j)
my(j)

+ my(j)log
my(j)
mx(j)

]
(7)

As the decompositions depend on the design parameters
gathered in vector θ, the superscript θ will appear in the
following for all the concerned notations.

3.3. Quality criterion

A misclassified signal x of ωa (ωb) corresponds to a positive
(negative) occurrence of fθ(x):

fθ(x) = d(Mθ
x , Rθ

a) − d(Mθ
x , Rθ

b) (8)

We assume that fθ follows a Gaussian distribution (con-
sequence of the central limit theorem and verified on a toy
example). The overall probability of classification error (reg-
ularized risk) is:

P θ
e =

1
2

(
P θ

e (ωa) + P θ
e (ωb)

)
(9)

P θ
e (ωa) ≈ 1

σθ
a

√
2π

∫ +∞

0

exp

(
−1

2

(
z − µθ

a

σθ
a

)2
)

dz

P θ
e (ωb) ≈ 1

σθ
b

√
2π

∫ 0

−∞
exp

(
−1

2

(
z − µθ

b

σθ
b

)2
)

dz

where µθ
a, σθ

a (µθ
b , σ

θ
b ) are the empirical means and standard

deviations of the assigning variable fθ(x) estimated on the
training signals of ωa (ωb).

We propose to optimize θ by minimizing the criterion
(9) (exhaustive search : sampling of θ on a grid and compu-
tation of the criterion on each node). Note that the optimal
criterion value can be used to assess the relevance of the
choice of Lh or Lp (the number of design parameters) as it
provides information on the classification error.

4. A TOY EXAMPLE

In this section, we apply the method on academic simula-
tions and, for reasons of computing time, we restrict the op-
timization procedure to filters of length Lh = 6, 8 and/or

(a)

(b)

0 256
−2.5

0

2.5

(c)

0 256
−2.5

0

2.5

(d)

Fig. 1. Signals generation. The four dilated versions (non-
integer dilation factor) of the waveform characterizing (a):
the class ωa, (b): the class ωb. A signal realization (c): of
class ωa, (d): of class ωb (each pulse of a random train is
convolved by one of the four dilated versions of the wave-
form, randomly selected).

convolving symmetrical sequences of length Lp = 3 (see
(4)). We present the signals generated as waveform trains,
and discuss the classification results.

4.1. Signals

We generate two classes of signals. In each class, the signals
are the result of the convolution of a pulse train with a wave-
form characterizing the class. More precisely, each pulse is
convolved by one of four dilated versions of the waveform,
randomly selected (non-integer dilation factor). Pulse oc-
currences are random for each signal, they appear with a
probability q = 0.2. The signal’s length is N = 256, and
the waveforms’ length is about 40. We generate 50 signals
per class for the training set, and 1000 signals per class for
the test set. Figure 1 shows an instance of signal generation
for each class.

Notice that the waveforms used to generate these signals
are supposed to be unknown. We do not try to detect these
particular waveforms in the signals.

4.2. Results

The results of the classification of these academic signals
are summarized in Tables 1 and 2. Table 1 deals with clas-
sification using, in the first column, a standard wavelet (i.e.,
not optimized) and in the second one, an optimized orthog-
onal wavelet (direct optimization of the filter h, see Section
2.1). Table 2 shows the results concerning the linear com-
bination approach (we convolve an existing wavelet with
a sequence p and we optimize p, see Section 2.2). In the
first column, we start from the previous standard wavelet.
In the second column, we start from the previous optimal
wavelet. Figure 2 shows the wavelet corresponding to the
optimization of h in the case Lh = 6, and its optimal linear
combination.
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Daubechies Optimization of h

Lh Crit. Mc rate Crit. Mc rate

6 0.26 23.4 % 0.10 11.6 %

8 0.13 10.8 % 0.05 4.1 %

Table 1. Results of the classification of academic signals,
using orthogonal wavelets. The first column corresponds
to the classification using a wavelet selected from a cata-
logue, here Daubechies 6 and 8. For the second column, the
mother wavelet has been optimized according to the param-
eterization seen in Section 2.1. The notation "Crit." means
the criterion value, "Mc rate" stands for misclassification
rate.

Init: Daubechies Init: optimal h

Lh Crit. Mc rate Crit. Mc rate

6 0.14 11.5 % 0.07 5.6 %

8 0.04 4.9 % 0.02 2.5 %

Table 2. Results of the classification of academic signals,
using semiorthogonal wavelets. Here we use the second pa-
rameterization (see Section 2.2). In the first column, we op-
timize p by starting from a Daubechies 6 or 8. In the second
column, we optimize p by starting from the optimal wavelet
stemmed from the previous result (second column of Table
1). The notation "Crit." means the optimal criterion value,
"Mc rate" stands for misclassification rate.

Three main points arise by analyzing these results. First-
ly, Table 1 shows that classification performances are signif-
icantly improved by the mother wavelet opimization. Sec-
ondly, observing Table 2 after Table 1 reveals that opti-
mizing linear combinations of wavelets also provides better
classification results. Thirdly, as proved in Table 2, the best
result is achieved by combining the two methods: optimiz-
ing the filter h in a first step and then, optimizing a linear
combination of this resulting optimal wavelet. Comment:
the computing time needed to successively optimize a filter
h of length Lh = 6 and then a symmetrical sequence p of
length Lp = 3 is much lower than optimizing a filter h of
length Lh = 8, and leads to close results.

We can also notice the good suitability between the opti-
mal criterion values and the misclassification rates: it proves
that the regularization (proposed in Section 3.3) provides
a classifier with good generalization capability. Moreover,
the criterion value, computed on the training set, can be
used to assess the relevance of the choice of Lh or Lp, be-
fore launching the classification procedure of the test set.
By way of comparison, we have also performed classifi-
cation tests with a Fourier spectral method instead of us-
ing wavelets (Kullback distances between normalized po-

(a) (b)

Fig. 2. Optimal wavelets stemmed from (a): the optimiza-
tion of h with Lh = 6, (b): the optimal linear combination
of the wavelet (a).

wer spectra): it failed with around 40% of misclassified sig-
nals, confirming that a sine basis is not adapted to this type
of classification problem.

5. CONCLUSION

In this paper, we have defined a framework to generate mo-
ther wavelets adapted to signals and application. We have
shown its efficiency for a classification problem of signals
made of waveform trains (inpired by electromyogram sig-
nals, next forecast application). The mother wavelets are
designed either from MRA filters, either from linear combi-
nations of existing wavelets, but other ways are under study:
linear combination of scaling function, lifting...
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