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ABSTRACT

We propose a modification to a polynomial SVD technique,
known as SBR2, which enables it to be applied effectively to the
task of optimal FIR paraunitary filter bank design for use in
subband coding. We compare our technique, namely the SBR2
coder, to a state-of-the-art FIR compaction filter design method.
Here, we show that, in the particular case of a two-channel filter
bank, high coding gains are obtainable with our technique for a
small number of algorithm iterations.

1. INTRODUCTION

The design of filter banks (Fig. 1) for subband coding of signals
has been extensively studied [1]-[5]. For the case where the
order of the filters is unconstrained, it is known that a principal
component filter bank (PCFB) exists and is an optimal
orthonormal (paraunitary) filter bank for this problem [2], [3].
This is also true when the filter orders are constrained to be not
greater than the number of subband channels. In this case, the
Karhunen-Loeve transform (KLT) or the singular-value
decomposition (SVD) provide the optimal solution. It has been
shown that, in general, the PCFB does not exist for the
intermediate case where order-constrained filters (or finite
impulse response (FIR) filters) are used [4]. This is except for
the special case of the two-channel filter bank.

A number of authors have proposed methods for the design of
suboptimal (near-optimal) constrained-order orthonormal filter
banks [5], [6]. A technique that achieves this efficiently is the
window method, proposed in [5]. This technique can be used to
design a compaction filter for a signal with a given power
spectral density (psd). A two-channel FIR paraunitary filter bank
is easily constructed using this method; a strategy for
multichannel orthonormal filter bank design has not been
published. In [6], Moulin et al present an alternative approach
which uses linear programming to design paraunitary filter
banks. The algorithm is computationally costly and complex for
large filter orders. In contrast, the window method is less
complex and faster even for large filter orders.

Other authors have presented paraunitary filter bank design
methods in the context of signal subspace analysis of broadband
signals [7], [8]. The approach by Regalia and Loubaton in [7]
exploits the fixed degree parameterisation proposed by
Vaidyanathan [1]. They re-formulate the problem using a state
space model and propose an iterative solution, which avoids the
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Figure1l (a) M-channel uniform maximally decimated

filter bank and (b) its polyphase representation.

problems of local minima associated with gradient descent
techniques. An extension of the SVD to broadband signals is
proposed in [8]. The technique essentially performs a SVD (by
way of the QR-algorithm) of a set of windowed data at every
frequency. This algorithm is capable of producing accurate
subspace decomposition.

Another method that can be viewed as a generalisation of the
SVD to broadband signals (or polynomial matrices) is proposed
in [9]. This algorithm is called the second order sequential best
rotation (SBR2) algorithm. The SBR2 algorithm has been
successfully used in applications where the SVD has
traditionally been employed; including subspace decomposition
and multichannel data compression. In this paper, we present an
adaptation of this technique for the purpose of designing an
orthonormal filter bank for subband coding.

2. FILTER BANK OPTIMALITY

An M-channel subband coder is shown in Fig. 1(a) and its
polyphase form is shown in Fig. 1(b). This is a maximally
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decimated uniform filter bank; our discussions are limited to this
type of subband coder. We further assume that the filter bank is
orthonormal, i.e., E(¢“) is unitary for all @. In other words, the
matrix E(z) is paraunitary ( E(z)F](z) =1), where E(z) is a
matrix of polynomials (or polynomial matrix) [1]. If F(z) is
chosen such that E(z)F(z)=cz I, for some constant ¢ and
integer #, then the subband coder is a perfect reconstruction filter
bank. That is, with no subband-processing, y(¢) =x(t—7) for all
tand 7.

A PCFB offers an optimal solution to two subband coding

problems. Firstly, it is an optimal orthonormal subband coder in
the sense of maximising the coding gain [2]
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where, o2 is the variance of v,(?): the output of H,(z).

ve
Secondly, it minimises the reconstruction error for a proper
subset of the set of subband channels. Vaidyanathan has shown
that the outputs of a PCFB simultaneously satisfy:

Strong  decorrelation. The subband signals, v,(7), are
decorrelated at all relative time lags, i.e.,

E[Y v, (ty, (t+1)]=0, )

for {#m andall 7.
Spectral majorisation. Let the psd of v,(f) be denoted as

S, (e’”). The set {S,(e/”)} has the spectral majorisation
property if, for all @,

S11(e7?)2 8y (e/”)2 ... 2 8,,,(e7), 3)

2

where the subbands are numbered such that CTVZ/ 20y, -

however, in general Eq. (1) does not represent the objective.

3. POLYNOMIAL MATRIX SVD

Correlation between signals is a type of redundancy which can
be exploited to achieve compression. If the signals are correlated
at a single relative time-lag then the KLT (or SVD) can be used
to (instantaneously) decorrelate the signals. The decorrelation
process converts the form of the redundancy from correlation
between the signals to disparity between the signal powers. At
this stage, it is possible to achieve compression by discarding
low power channels. Viewed differently, the algorithm estimates
a noise subspace, which may be discarded. (Alternatively, the
low power channels may be encoded with a lower number of bits
than the dominant channels.)

In the case of the KLT/SVD, the matrix E(z) in Fig. 1(b) is a
unitary matrix, which is applied to the vector x(#) (or polynomial
vector X(z), which contains ‘blocked’ samples of the input signal
x(#)). The orthogonality condition implies that the transformation
is energy preserving, so the algorithm can be used to identify
signal-plus-noise and noise subspaces.

However, if x(7) contains signals that are correlated at more than

one time-lag, instantaneous decorrelation by a unitary matrix is
no longer sufficient for maximisation of Eq. (1); strong

decorrelation (or decorrelation at all relative time lags) is
necessary. For accurate estimation of the broadband signal
subspace, strong decorrelation must be imposed. To achieve this,
the transformation applied is required to be in the form of a
matrix of polynomials, or equivalently a bank of FIR filters.
Such a filter bank can be found by the SBR2 algorithm.

The SBR2 algorithm [9] uses a simple scheme for generating
polynomial (FIR) paraunitary matrices for the strong
decorrelation of multiple channels. A paraunitary matrix
represents an all-pass filter bank and, accordingly, it preserves
the total signal energy at every frequency [1]. The structure of
the filter bank produced by the technique is an immediate
generalisation of the paraunitary matrix decomposition found by
Vaidyanathan in [1]. For the 2 x 2 case, the paraunitary matrix
may be expressed as,

H(z)=Q,A™(2)...Q,A™(2) . 4)

Here, the polynomial matrix A™(z) has the form

1 0
A (Z)_{O zf”} , wWhere the integer parameters 7, can be

negative or positive. The matrix Q,, is a 2x2 unitary matrix and

Q,A™(z) is an elementary paraunitary matrix/block. The

SBR2 is an iterative algorithm. At each step of the algorithm, the
signals produced by the previous step are used to find an optimal
time-delay and a rotation matrix, which are then applied to those
signals. This is repeated a predefined number times. A graphical
representation of this decomposition is provided in Fig. 2. The
polynomial matrix generated by Eq. (4) is paraunitary since each
stage is paraunitary. Note that the degree is not specified
beforehand.

The parameter values for each block are chosen with a greedy
optimisation scheme; a generalisation of the classical Jacobi
algorithm is employed. SBR2 has recently been developed into a
multichannel algorithm that performs, to a good approximation,
strong decorrelation and spectral majorisation.

The algorithm can be classed as a blind technique since its
formulation is not based on knowledge of the true statistics of
the input signal. Therefore, the performance of the filter bank it
applies depends on the accuracy of its estimate of the true
covariance matrix for input signals.
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Figure 2  Flow diagram of SBR2
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The SBR2 algorithm can be used directly to construct an MxM
paraunitary polynomial matrix E(z) for the decimated subband
signals X(z) in Fig. 1. The output subband signals from E(z) may
be expressed as V(z) = E(z)X(z). However, if the input signal
x(?) is stationary, this scheme can be improved upon. In this case,
the statistics of the demultiplexed input signal have some
structure. This knowledge is implicitly exploited by conventional
filter bank design algorithms, such as the window method.

4. SBR2 CODER

As discussed above, applying the matrix E(z) constructed by
SBR2 directly to X(z) does not use all the information available.
The true covariance matrix, A(z), of the outputs, X(z), of the
demultiplexer in Fig. 1(b) has a pseudocirculant structure
(defined below). The coefficients of the polynomial entries of
A(z) are correlations between pairs of signals at different time-
lags. In this paper, we say that A(z) is a polynomial covariance
matrix. A polynomial covariance matrix is usually associated
with broadband or convolutively mixed signals. Since the SBR2
algorithm can operate on arbitrary input signals, the
pseudocirculant structure is ignored. For the effective application
of SBR2 to coding, the algorithm needs to be modified.

4.1. Pseudocirculant matrices
An M x M polynomial matrix A(z) with entries 4,,(z) is said

to be pseudocirculant if there exist polynomials
D (2),D,(2),...,P,,_,(z) such that
@, (2), 1S/<m<M
AnE= 5)
z q)m4+}\/(z)a 1<m< /(<M.

In words, A(z) is a circulant matrix except that the entries below
the main diagonal are multiplied by z™'.

4.2. 'Wide-sense stationarity

A stochastic process is said to be wide-sense stationary (WSS) if
and only if: (1) E[x(¢)] = E[x(¢ + 7)], for all integers ¢ and 7, and
2

E[x(H)x (t+t7)] =a(7»), forall g 6)

where a(7) is the autocovariance function of x(7). Note that we
assume E[x(¢)] = 0 for all ¢.

4.3. The structure of the covariance matrices

We show that the covariance matrix of a demultiplexed WSS
signal has a pseudocirculant structure. The blocked samples from

the demultiplexer in Fig. 1 are x(7)=[x,(1),x,(2),....,xy (O],
where x,(£)=x(Mt+k—-1) (1<k<M). A typical term from

the true covariance matrix of x(#), A(z), is (ignoring
normalisation)

Ay (2) c E [(Z,x, (nz" erxm (2" )J
= £ xmr+ 0=z [T x(vtr+m-1)2' )|

= ZIE[ZIx(M(t+ )+ 0 —=Dx(Mt+m— 1)]2"

o Zra([M(zﬂ)w—l]—[M:+m—1])z*’
=Y a(Mr+m—0)z".

So, setting CDk(z)zzTa(Mr+k—l)z'T , we see that A(z) is

pseudocirculant.

4.4. Exploiting signal statistics

The SBR2 algorithm can be modified to exploit the
pseudocirculant structure of A(z). The set of diagonally related
elements of R(z) are different estimates of the same true cross-
covariance. Therefore, to improve the estimate of A(z),
averaging may be performed across the associated coefficients in
R(z) — taking account of the delay between terms above the
diagonal and those below.

We define

1 (M=K M
@ (7) :_( Z’”«Z,M (7)+ ZV(/,M-M (T+1)Ja @)
M\ 3 (=M—k+1
0<k<M-1, and a typical entry of the new (averaged) sample
covariance matrix R'(z) as

Zr(pm—f;(r)27 >
Zr(ﬂm—(+M (T)Z_T_] >

The operations that the SBR2 algorithm performs are determined
by R(z). It is straightforward to modify the algorithm to ‘work
in the covariance domain’ and operate on the covariance matrix
directly. The algorithm can then be applied to our improved
estimate of the covariance matrix. This modification yields the
SBR2 coder.

1<l<m<M

R}, (2)= ®)

1<m</l<M.

5. SIMULATIONS

We present simulation results relating to an investigation into the
coding gain performance of the SBR2 coder. The results are
compared to the window method, which was chosen because of
its simplicity and efficiency. We modelled the two-channel filter
bank (Fig. 1 for M = 2) and used the SBR2 coder and the
window method to design appropriate analysis banks for an input
signal x(7). This signal was obtained from the output of an order
5 autoregressive (AR(5)) filter with the transfer function G(z) =
Uz)/W(z), where U(z) = 0.6903 — 0.0160z" — 0.1453z7 +
0.3302z° — 0.54262* — 0.3141z7° and W(z) = 0.6867 — 0.4363
Zz'+0.12552% - 031622 + 04688z — 0.0516z. The AR(5)
filter was driven by samples drawn from a white noise process of
zero mean and unit variance. An AR model is regarded as a good
model for many practical signals such as image and speech
signals. The true psd of x(7) is shown in Fig. 3.

The magnitude-squared frequency response of the filters H;(z)
and H,(z) constructed by the SBR2 coder after 100 iterations are
shown as the solid and dotted curves in Fig. 3, respectively. It is
clear from Fig. 3 that the SBR2 coder has designed a multiband
compaction filter with passbands that coincide with dominant
signal frequency components. This is indicative of a high coding
gain.

The coding gain performances of the SBR2 coder and the
window method are shown in Fig. 4. In the case of SBR2, the
Figure shows coding gain versus the number of algorithm
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iterations/steps or delay-rotation stages. In case the of the
window method, the coding gain was calculated for a number of
fixed filter orders. The straight dotted line represents the
maximum attainable (ideal) coding gain G' = 1.94. The
performance of both filter banks approaches the ideal
performance as the number of iterations and the filter order
increases. The window method produces marginally better
coding gain performance for high filter orders than the SBR2
coder does for a high number of steps. However, the SBR2 coder
achieves high coding gain for a small number of steps — in the
range (1,~50). This is because SBR2 has the freedom to choose
the most important filter coefficients first, whereas, the window
method has a fixed order filter, which it must parameterise. The
simplicity of the window method makes it computationally more
efficient than the SBR2 coder. In order to represent the filter
designed by SBR2 one real number and one (typically small)
integer are required for each step. By contrast, the filter bank
designed using the window method requires one real number for
each filter tap.
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Figure3  Power spectral density of an AR(5) process
and the frequency response of the filters
designed by the SBR2 coder.
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Figure 4  Coding gain versus the number of iterations
(or filter order) for the SBR2 coder and the

window method.

6. CONCLUSIONS

In this paper, we have presented a new algorithm, namely the
SBR2 coder, for the design of paraunitary filter banks. Its
performance has been characterised and compared to that of the
window method. In the particular case of a two-channel filter
bank, the SBR2 coder attains high coding gains for a small
number of iterations (short filters). For large filter orders, the
window method performs slightly better than the SBR2 coder.

The SBR2 algorithm, unlike the window method, does not
assume that signals have stationary statistics; therefore, it could
be applied much more readily to non-stationary signals. The
non-stationarity condition is found in a number of applications,
such as, practical communication systems. Another potential
benefit of using the SBR2 coder arises in situations where
perfect reconstruction is required for the multichannel case. The
SBR2 coder produces strictly paraunitary polyphase matrices. In
applications where lossless compression is required the SBR2
coder may be a more suitable algorithm than a multichannel
window method; where exact paraunitariness will not hold.

It is envisaged that the SBR2 coder can also be extended
naturally to the case of multiple input signals, i.e., it can be used
in a multi-input, multi-output subband coding scheme. This is
left for future exploration.

7. REFERENCES

[1] Vaidyanathan P.P., Multirate Systems and Filter Banks,
Englewood Cliffs, NJ: Prentice-Hall 1993.

[2] Vaidyanathan P.P., “Theory of optimal orthonormal filter
banks”, IEEE Proc. ICASSP-96, vol. 3, pp. 1487-1490,
Atlanta, May 1996.

[3] Tsatsanis M.K. and Giannakis G.B., “Principal component
filter banks for optimal multiresolution analysis”, /EEE
Trans. on Signal Processing, Vol. 43, No. 8, August 1995.

[4] Kirac A. and Vaidyanathan P.P., “On existence of FIR
principal component filter banks”, IEEE Int. Conf. Asp,
Seattle, 1998.

[5] Kirac A. and Vaidyanathan P.P., “Theory and design of
optimum FIR compaction filters”, IEEE Trans. on Signal
Process., Vol. 46, No. 4, April 1998.

[6] Moulin P. and Mihcak M.K., “Theory and design of signal-
adapted FIR paraunitary filter banks”, /[EEE Trans. on
Signal Process., Vol. 46, No. 4, April 1998.

[7] Regalia P.A. and Loubaton P., “Rational subspace
estimation using adaptive lossless filters”, [EEE Trans.
Signal Process., Vol. 40, No. 10, pp. 2393-2405, Oct 1992.

[8] Lambert R.H., Joho M., and Mathis H., ‘“Polynomial
singular values for number of wideband source estimation
and principal component analysis”,
http://ica2001.ucsd.edu/index_files/pdfs, 2002.

[91 McWhirter J.G. and Baxter P.D., “A novel technique for
broadband SVD”, The twelfth adaptive sensor array
processing workshop, MIT Lincoln Laboratory, March
2004.

T The authors are grateful to John McWhirter of QinetiQ Ltd and
Stephan Weiss of the University of Southampton for their
guidance and support.

IV-616

I 2



