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ABSTRACT

Recently, there has been a significant interest in the design
of iterated filter banks in which the resulting wavelet bases
form an approximate Hilbert transform pair. In this work,
we propose three approximations of such dual-tree wavelet
bases that satisfy Hilbert transform conditions. Our designs
are derived from Selesnick’s and Kingsbury’s orthogonal
wavelet filter solutions, and meet other desirable properties
such as high coding gain, reduced computational complex-
ity and sufficient regularity. The Quantization is performed
in lattice domain using sum-of-power-of-two (SOPOT) co-
efficients. Several performance comparisons are presented.
Furthermore, this paper introduces a proposition that lattice
coefficients of filters that are time-reversals of each other
are closely related.

1. INTRODUCTION

The discrete wavelet transform (DWT) offers solutions in
a wide variety of image and signal processing applications,
including compression, denoising, classification, and many
others. The last couple of years have seen significant progress
in the theory and design of M-channelfilter banks and wavelets
[1]. However, there are well known limitations in the con-
ventional wavelet design, for example the lack of direction-
ality/phase information and poor shift invariance. The aim
of research in the field of complex wavelet transforms is to
explore solutions to these limitations, while benefiting from
the existing advantages that wavelets provide.

Several authors have proposed that in a formulationwhere
two dyadic wavelet bases form a Hilbert transform pair,
DWT can provide answer to some of the aforementioned
limitations. Shown in Fig. 1, Kinsbury’s complex dual-tree
[2] has received considerable interest. In dual-tree, two real
wavelet trees are used, each capable of perfect reconstruc-
tion (PR). One tree generates the real part of the transform
and the other is used in generating complex part. As shown,
{H0(z), H1(z)} is a Quadrature Mirror Filter (QMF) pair in
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the real-coefficient analysis branch. For the complex part,
{G0(z), G1(z)} is another QMF pair in the anaylsis branch.
All filter pairs discussed here are orthogonal, real-valued
and are power-complementary.

It has been shown [3] that if filters in both trees can
be made to be offset by half-sample, two wavelets satisfy
Hilbert transform pair condition. Thus if

G0(ω) � H0(ω) × e−jθ(ω) θ(ω) � ω/2

Then

ψg(ω) �

{
−jψh(ω) ω > 0
jψh(ω) ω < 0

.

Fig. 1. Kingsbury’s dual tree DWT.

2. DESIGN PROCEDURE

Our design procedure is governed by global optimization of
the following parameters:

• Coding Gain relates to the ability of a sub-band coder
to compress most of the signal energy in least number of
bands. The biorthogonal coding gain Cg is defined as:

Cg = 10 × log10

σ2
x(∏

M−1

i=0
σ2

xi × ‖fi‖2

)1/M

Where:
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M Number of sub-bands
σ2

x Variance of input
σ2

xi Variance of i-th sub-band
‖ fi ‖

2 L-2 norm of i-th synthesis basis function

Where input is a first order Gaussian-Markov process with
zero-mean, unit variance and correlation coefficient 0.95.

• Hilbert Transform characteristics are related to the
directional selectivity of the dual-tree DWT. Thus, the fre-
quency response of the function ψh[n]+jψg[n] should have
high attenuation for all frequencies in the region −∞ <
ω < 0. In order to measure this, we propose a new mea-
sure, Hilbert PSNR (HPSNR), defined as

HPSNR = 10 × log10

(
max|ψh(ω) + jψg(ω)|2∫
0

−∞

|ψh(ω) + jψg(ω)|
2
dω

)
.

• DC Leakage or Vanishing Moments (DCPSNR) is
another property that distinguishes wavelets from classical
filter banks. It is defined as the number of zeros of the low-
pass filters at Z = −1 and is directly related to the smooth-
ness of the resulting wavelet and scaling functions. After
quantization, the zeros at Z = −1 get perturbed, however
by enforcing that the sum of all the lattice angles, θi satisfies∑

i

θi = {π/4, 5π/4}± 2πk,

we can still fix one zero to be at exactly Z = −1. This
would imply that no DC should be picked up in the high-
pass sub-band. It would also enforce

∑
n h1[n] = 0 where

h1[n] is the analysis high-pass filter.
We used the software Singular1 to develop a framework

to switch from filter domain to lattice domain and perform
heuristic search amongst several solutions. Smoother wavelets
are needed for H0(z), because it is intended for compres-
sion applications. Therfore the quantization bits for H0(z)
are selected so that coding gain is maximized. Since G0(z)
is used only when Hilbert transform is required, its smooth-
ness is not critical. For two out of three designs presented
here, G0(z) is approximated accordingly to maximize its
Hilbert characteristics, yet maintaining its applicability in
traditional signal processing operations.

2.1. Design Via Exhaustive Search

Our first design is termed Lat-6 and it is obtained by exhaus-
tive search in three Lattice stages. This design is based on
Kingsbury’s Q-shift scheme, so the filter set {G0(z), G1(z)}
is taken to be a time-reversal of {H0(z), H1(z)}. As will
be explained soon, under this condition, the lattice coeffi-
cients of {G0(z), G1(z)} can be directly derived from those

1Algebraic Geometry Group, Univ. of Kaiserslautern, Germany -
http://www.singular.uni-kl.de/

of {H0(z), H1(z)}. The DC leakage condition introduced
above allows us to express one of the angles in terms of
the other two. Thus, the optimization problem reduces to a
search in 2-D space. Results from this search are plotted in

Fig. 2. Exhaustive search results, in dB, for Coding Gain
(left) and Hilbert PSNR (right). The black cylinders mark
the point that corresponds to Lat-6 implementation.

3D (in Fig. 2) against first two lattice coefficients (K0 and
K1). It is clear that the Hilbert performance of this design
is optimal for a 3-lattice structure. The polyphase factoriza-
tion of this implementation is as follows:

Hp(z) =

[
−5/64 0

0 −5/64

] [
1 3/16

−3/16z−1 z−1

]
. . .

×

[
1 −37/8

37/8z−1 z−1

] [
1 −5/2

5/2z−1 z−1

]

Gp(z) =

[
−1/64 0

0 −1/64

] [
1 85/16

−85/16z−1 z−1

]
. . .

×

[
1 37/8

−37/8z−1 z−1

] [
1 5/2

−5/2z−1 z−1

]
.

The filter coefficients for this design are shown in Table 3.

2.2. Design Via Approximation

The next design, called Lat-12, is based on Selesnick’s ap-
proach in [3] (called Sel-12) where the author described
a systematic design procedure based on spectral factoriza-
tion. In this procedure, a flat-delay all-pass filter is used to
approximate half sample delay between H0(z) and G0(z).
The problem reduces to the design of only two filters: H0(z)
and G0(z). Presented as Example 1A in [3], the two fil-
ters have 12-taps with 4 vanishing moments and 2rd order
all-pass characteristics. As shown in Table 1, the dyadic
rationals of Lat-12 are very good approximations of the ir-
rationals originally proposed by Selesnick. The filter coef-
ficients for this design are displayed in Table 3.
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Table 1. Selesnick’s lattice and Lat-12 approximations
H0(z) Coefficients G0(z) Coefficients

Sel-12 Lat-12 Sel-12 Lat-12
K0 −7.48299980 −31/4 0.51739997 1/2
K1 −2.31345916 −9/4 7.54474640 15/2
K2 −2.40704036 −5/2 −0.25932312 −1/4
K3 1.75770926 7/4 −3.55918646 −7/2
K4 3.28926611 13/4 −2.48548698 −5/2
K5 −1.27999997 −5/4 −32.0000000 −25

2.3. Design Via the Time-Reversal Theorem

Theorem : For Kingsbury’s Q-shift designs [2], the filter
pair {G0(z), G1(z)} is related to {H0(z), H1(z)} by a time
reversal. Let K0, K1, . . . KN−2, KN−1 be lattice coeffi-
cients that implement {H0(z), H1(z)} pair, where KN−1

is associated with the last rotation. Then, the lattice coef-
ficients required to implement {G0(z), G1(z)} pair will be
−K0, −K1, . . . −KN−2, 1/KN−1. Thus, inverting last
coefficient and multiplying rest of the rotations by −1 im-
plements the time-reversed filters. The proof is beyond the
scope of this paper, but will be reported soon.

The final approximation is based on the above-mentioned
theorem. Termed as Lat-14, it is based on a 14-tap Q-shift
filter design proposed by Kingsbury (called Kings-14)2. In
this case, the filter G0(z) is a time-reverse version of H0(z),
and therefore is same as the low-pass filter in the real-synthesis
branch. Lattice coefficients and quantized lattice are dis-
played in Table 2. The time reversal theorem is also evident
from observing unquantized coefficients in Table 2, where
product of the K6 coefficients for H0(z) and G0(z) is one.
For K0 . . . K5, rotations have opposite sign but same mag-
nitude. Implementation of Lat-14 is shown in Fig. 6.

Table 2. Kingsbury’s lattice and Lat-14 approximations
H0 Coefficients G0 Coefficients
Kings-14 Lat-14 Kings-14 Lat-14

K0 −1.19400000 −19/16 1.19400000 19/16
K1 0.31583467 5/16 −0.31583467 −5/16
K2 12.6443805 25/2 −12.6443805 −25/2
K3 0.03376979 1/16 −0.03376979 −1/16
K4 −0.75500833 −3/4 0.75500833 3/4
K5 6.80293321 21/4 −6.80293321 −21/4
K6 −1.40100002 −11/8 −0.71377586 −8/11

3. EVALUATIONS AND APPLICATIONS

In this section, we define some of the figures of merit that
will be used in evaluating the performance of the proposed
designs.

3.1. Performance on JPEG-2000

For better compression, the wavelet and scaling functions
should be as smooth as possible. Generally, this smoothness

2Matlab files for generating these filters are available at: http://www-
sigproc.eng.cam.ac.uk/˜ngk/

Table 3. Quantized filter coefficients
Lat-12 Lat-6

n h0[n] g0[n] h0[n] h1[n]
1 −1/20

−1/20
−1/20

−1/20

2 31/22
−1/21 5/21

−5/21

3 325/24 74/20 1369/27 4625/27

4 −641/25 221/23 1739/28 14541/28

5 3349/27
−2077/24

−15/25 425/25

6 167787/29 39141/28
−3/24

−85/24

7 894613/211 107133/28
− −

8 121285/210 18121/24
− −

9 −22933/28
−735/23

− −

10 −1079/25
−285/20

− −

11 155/24
−25/21

− −

12 5/22 25/20
− −

K 0.0017593 0.0004676 −0.0771427 −0.0145190

is directly related to the number of zeros at Z = −1. The
integer-coefficient designs presented here generate functions
that have accepetable smoothness and are very close ap-
proximations with low complexity. In Fig. 3 the Lat-12
wavelet and scaling functions (for analysis stage) are plot-
ted. The Lat-12 designs are orthogonal, so the synthesis
scaling and wavelet functions are the time-reversals of anal-
ysis functions. Some other factors worth considering are
coding gain and DC leakage (results shown in Table 5).

The proposed families of wavelet filters have been im-
plemented in JPEG-2000 compression engine. Table 4 com-
pares PSNR results of integer-coefficient filters with popu-
lar Daubechies filters and the original Selesnick/Kingsbury
designs. Only H0(z) is considered because the idea is to
use only one of the trees in case compression is the ultimate
goal. In summary, the performance of quantized filters is
comparable to that of the Daubechies’ filters and the previ-
ously published irrational-coefficient dual-tree CWT filters.

Fig. 3. Lat-12: (a) φh[n] (b) ψh[n] (c) φg[n] (b) ψg[n]

3.2. Hilbert Performance and Directional 2-D Wavelets

Fig. 4 plots the function |ψh(ω) + jψg(ω)| for Lat-12 fil-
ters. We have found that the Hilbert performance of all of
the proposed designs is as good as the original ones. Mea-
surements of Hilbert PSNR are tabulated in Table 5.

3.3. Denoising performance

Due to shift-invariance and good directional selectivity, the
dual-tree complex wavelet transform has been shown to be
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Fig. 4. Plot of function |ψh(ω) + jψg(ω)| for Lat-12.

Table 4. JPEG-2000 performance on standard test images

Bitrate Daub 9/7 Sel-12 Lat-12 Kings-14 Lat-14
Lena 0.5 37.22 37.05 37.01 37.00 36.57

0.25 34.04 33.80 33.79 33.86 33.47
0.125 30.65 30.43 30.26 30.45 30.24

Barb 0.5 32.30 32.26 32.19 32.54 32.40
0.25 28.41 28.39 28.37 28.53 28.51
0.125 25.26 25.35 25.37 25.51 25.48

Boat 0.5 34.64 34.48 34.47 34.38 34.14
0.25 31.06 30.79 30.82 30.85 30.71
0.125 28.01 27.94 27.89 27.99 27.82

an effective tool for image and video denoising. An alter-
nate argument to explain it is that CWT has bases functions
that can capture edges in more number of orientations than
real DWT. Thus, for CWT, edges at ±15◦ and ±75◦ are
much better preserved after thresholding. Fig. 5 shows3

PSNR Vs Threshold point plot for the stonehenge image.

4. CONCLUSION

We have presented efficient designs of Hilbert transform
pairs of orthogonal wavelet bases. Lat-12 approximation is
the best because of its high coding gain, better Hilbert char-
acteristics and lower complexity. For compression, the real
tree can be used alone. However, when the need is to obtain
directional information, G0(z) can be applied to the same
data. Furthermore, all of our filter coefficients are dyadic
rationals, and as a result the designs can be mapped onto
very efficient VLSI implementation.

3Most of our denoising experiments were based on the Matlab code
available at http://taco.poly.edu/WaveletSoftware/index.html
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Fig. 5. PSNR Vs Threshold points plot. The image for this
example had 32.22dB PSNR before denoising. The best
achievable PSNR with separable 2-D DWT was 32.70dB.

Table 5. Property comparisons of the proposed designs

Coding Gain HPSNR DCPSNR
(dB) (dB) (dB)

Filters H0 F0 G0 P0 H0 G0

Lat-6 9.10 9.10 9.11 9.11 44.75 68.42 68.92
Sel-12 9.62 9.62 9.62 9.62 46.64 188.1 214.8
Lat-12 9.61 9.61 9.62 9.62 49.29 75.66 79.67

Kings-14 9.67 9.67 9.67 9.67 48.93 108.4 108.4
Lat-14 9.64 9.64 9.64 9.64 40.05 72.34 72.34
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Fig. 6. Lattice-Domain Implementation of the Lat-14.
Top: {H0(z), H1(z)} Bottom: {G0(z), G1(z)}.
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