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ABSTRACT

In this paper, we present a novel lattice structure and design of the
linear phase M -channel paraunitary filter banks whose all filters

have zeros at the mirror frequencies except for its passband. This

structure is implemented by replacing the first block of the lattice

structure with two type II DCTs. With this structure, the filter
banks are implemented with high speed and is designed without

taking account of the stopband attenuation. Finnaly we show some

examples to validate the proposed method.

1. INTRODUCTION

Filter banks (FBs) have found many applications such as in speech,

audio and video compression, statistical signal processing, dis-
crete multitone modulation and channel equalization[1]- [5]. Fig.

1 shows an M -channel maximally decimated filter bank, where

Hk(z) and Fk(z) are the k-th (for k = 0 · · ·M −1) analysis filter

and the synthesis filter, respectively. The analysis and synthesis fil-
ters are represented by using the polyphase matrix E(z) and R(z),

respectively.

[H0(z) H1(z) · · ·HM−1(z)]T = E(zM )e(z)T

[F0(z) F1(z) · · ·FM−1(z)] = e(z)R(zM) (1)

e(z) = [1 z−1 · · · z−(M−1)]

When E(z)E†(z−1) = I and R(z) = E†(z−1), where .† stands

for the conjugate transpose, the filter banks are called paraunitary
filter banks(PUFBs). PUFBs are efficiently designed and imple-

mented by the lattice factorization.
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Fig. 1. M-channel filter bank

Recently, the lattice structure with some degrees of regularity

has been proposed[2], which is important in image coding. Ex-

tending this idea, the linear phase paraunitary filter banks whose

all filters have zeros at mirror frequencies except for its passband

are proposed in this paper. This structure is implemented by re-

placing the first block of the conventional lattice structure with two
type II DCTs. With this method, the filter bank is designed without

taking account of the stopband attenuation, since the stopband of

each analysis filter is formed automatically,

The filter banks using M points DCT has also been proposed

in[5]. However the proposed filter banks use two M/2 points

DCTs with parallel connection, its implementation is faster than

the conventional one.

2. FILTER BANKS

The paraunitary filter banks can be implemented by the lattice

structure that consists of the product of several othogonal blocks.
In this paper, we assume that the filter length is KM .

The polyphase matrix E(z) of the paraunitary filter bank is

expressed by[1][2]

E(z) = GK−1(z)GK−2(z) · · ·G1(z)E0 (2)

E0 is called first block. Gi(z) is called building block and ex-
pressed by

Gi(z) = ΓiWΛ(z)WΓT
i , E0 = Γ0WĨ (3)

where,

Γi =

»
I 0
0 Vi

–
, Γ0 =

»
U0 0
0 V0

–

W =
1√
2

»
I I
I −I

–
, Λk(z) =

»
I 0
0 z−1I

–

Ĩ =

»
I 0
0 J

–

where U0, Vi(i = 0, 1, · · · , K−1) are orthogonal matrices with

size M/2.

3. FILTER BANKS WITH ZEROS AT MIRROR
FREQUENCIES

In this section, we consider the linear phase paraunitary filter banks

whose all filters have zeros at mirror frequencies except for its pass

band.
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First we change the order of the analysis filters as follows.

H(z) = E(zM )e(z)

= [H0(z) H2(z) · · ·HM−2(z) (4)

HM−1(z) HM−3(z) · · ·H1(z)]T

Note that the lower half matrix with odd index start from the high-
pass filter HM−1(z) when M is even.

When the lowpass filter H0(z) has zeros at mirror frequencies
ω = 2πk/M(k �= 0), its condition using the polyphase matrix is

expressed by

[H0(e
j0) H0(e

j 2π
M ) · · ·H0(e

j
2π(M−1)

M )]

= [1 0 · · · 0]E(1)DFT (5)

where

[DFT]k,� =
1√
M

e−j 2π
M

k�

k, � = 0, 1, · · · , M − 1

We set E(1) by substituting z = ej 2πk
M into E(zM ). Furthermore,

E(1) = GK−1(1)GK−2(1) · · ·G1(1)E0

= E0 = Γ0WĨ (6)

Therefore we only consider the first block even if the filters have

long length.

Next, we consider the case that all analysis filters have zeros

at mirror frequencies except for its passband. Since the first block

is a real matrix , and its upper half is symmetry and the lower half
is anti-symmetry, its condition is expressed by

2
666664

H0(e
j0) H0(e

j 2π
M ) · · · H0(e

j
2π(M−1)

M )

H2(e
j0) H2(e

j 2π
M ) · · · H2(e

j
2π(M−1)

M )
...

...
. . .

...

H1(e
j0) H1(e

j 2π
M ) · · · H1(e

j
2π(M−1)

M )

3
777775

= E(1)DFT = A =

»
A0 A1

−jA1 jA0

–
S (7)

where the matrix S defines the phase term of a linear phase filter

with length M and [S]kk = e−j M−1
2

2πk
M = (−1)kej πk

M . Also

A0 =
1√
2

2
6664

√
2 0 · · · 0

0 a1

...
. . .

0 a M
2 −1

3
7775 (8)

A1 =
1√
2

2
666664

0 0 · · · 0
... a1

... · · ·
0 a M

2 −1 0

3
777775

(9)

Because A is a orthogonal matrix, ai = ±1, Note that the rows
of A correspond to the filters and the columns correspond to the

mirror frequencies. For example, when M = 8, the component

[A]3,3 corresponds to H6(e
j 3π

4 ). Thus if the filter banks satisfy

the above equation, the resulting filter banks have zeros at the mir-

ror frequencies.

Furthermore, since the filter banks have real coefficients, their
frequency responses are symmetry and we consider the range from

0 to π, that is from 0-th to (M/2)-th columns. Therefore (7) is

rewritten as

2
66664

H0(e
j0) H0(e

j 2π
M ) · · · H0(e

jπ)

H2(e
j0) H2(e

j 2π
M ) · · · H2(e

jπ)
...

...
. . .

...

H1(e
j0) H1(e

j 2π
M ) · · · H1(e

j
2π(M−1)

M )

3
77775

= E(1) ¯DFT =

»
Â0

−jÂ1

–
S̄ (10)

where ¯DFT is DFT from 0-th to (M/2)-th columns and S̄ is the

left upper matrix with size M/2 + 1 of S. From (7) and (10), Â0

and Â1 are rewritten by

Â0 =
1√
2

2
66664

√
2 0 · · · 0

0 1
...

...
. . .

0 · · · 0 1 0

3
77775 (11)

Â1 =
1√
2

2
66664

0 · · · 0
√

2
... 0 · · · 1 0

... 0
...

0 1 0 · · · 0

3
77775 (12)

In practice, the components of the above matrices are ±1. How-
ever the sign is negated by the sign of S̄. As result, S̄ is the diago-

nal matrix with [S̄]k,k = ej πk
M (k = 0, 1, · · · , M

2
).

Next, in order to obtain U0 and V0, ¯DFT is represented by

¯DFT =

»
Q

QD

–

[Q]k,� =
1√
M

ej 2πk�
M

j
k = 0, · · · , M

2
− 1

� = 0, · · · , M
2

D = diag([1 · · · − 1 · · · 1 − 1 1])

Based on these equations, (10) is rewritten as

E(1) ¯DFT = E0
¯DFT = Γ0WĨ

»
Q

QD

–

= Γ0

»
Q + JQD
Q− JQD

–
= Γ0

»
R0

R1

–
(13)

where

[R0]k,�

=
1√
M

n
e−j 2π

M
k� + e−j 2π

M
( M

2 −1−k)�(−1)�
o

=
2√
M

ej π
M

� cos{ π

M
(2k + 1)�} (14)

On the above equation, [R]k,M = 0 and the matrix from 0-th and

(M/2 − 1)-th columns of R0 is identical to type III DCT(DCT)

with M
2

points except for the normalized constant and phase term[7].
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Fig. 2. The lattice structure of the proposed method

R1 is also rewritten as

[R1]k,�

=
1√
M

n
e−j 2π

M
k� − e−j 2π

M
( M

2 −1−k)�(−1)�
o

=
2√
M

ej π
M

� sin{ π

M
(2k + 1)�} (15)

From (13),

U0R0 =
1√
2
U0[DCTIII 0]

·

2
66664

√
2 0

1
...

. . .
...

1

3
77775

= Â0

and we get

U0 = DCTT

III = DCTII (16)

Next, considering the lower half of (13), V0 has to satisfy:

V0R1 = Â1

Then we multiply J to the above equation from right

V0R1J = Â0

Ignoring the phase term,

[R1J]k,�

=
2√
M

sin{ π

M
(2k + 1)(

M

2
− �)}

=
2√
M

(−1)k cos{ π

M
(2k + 1)�}

This is identical to R0 except for the sign. Therefore

V0R1J =
1√
2
V0[D · DCTIII 0]

·

2
66664

√
2 0

1
...

. . .
...
1

3
77775

= Â0

As result,

V0 = DCTII · D (17)

Finally the first block of the filter banks is represented by

Γ =

»
DCTII 0

0 DCTII · D
–

(18)

Thus the filter banks whose all filters have zeros at mirror fre-

quencies are implemented by setting the first block as two type II

DCT with size M/2. Fig.2 shows the proposed lattice structure.

4. EXAMPLE

In general, the filter banks are designed by minimizing the objec-
tive function which consists of a linear combination of the coding

gain, DC leakage and stopband attenuation. However the proposed

filter banks automatically form the stopband and its DC leakage is

also zero. Therefore we optimize only the coding gain without
taking account of the stopband.

We designed the filter banks with 8 and 16 channels which op-

timize only the coding gain. Fig.3 shows the magnitude response

and impulse response of the filter bank with M = 8, L = 16.

Fig.4 shows the magnitude response of the filter bank with M =
16, L = 32. As shown these figures, the designed filter banks have

better attenuation than that of the conventional method and all fil-

ters have zeros at the mirror frequency except for the passband.

Table 1 shows the comparison of the coding gain and the num-
ber of free parameters between the proposed and the conventional

method with a regurality. The proposed method has comparable

coding gain with the conventional one inspite of less free parame-

ters.

Table 1. Comparison of Coding Gain and the number of free pa-

rameters

Conventional[4] Proposed

M K CG FP CG FP

8 2 9.2685 18 9.2663 6

8 3 9.3802 24 9.3747 12

8 4 9.4564 30 9.4532 18

16 2 9.7701 84 9.8102 28
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Table 2. Comparison of PSNR in image coding

Lena Girl Barb Camera

[bpp] 1/8 1/4 1/2 1/8 1/4 1/2 1/8 1/4 1/2 1/8 1/4 1/2

Conventional 30.07 33.25 36.54 31.92 34.10 35.99 26.25 29.31 33.36 24.15 26.65 29.91

Proposed 30.07 33.25 36.52 31.90 34.10 36.00 26.20 29.24 33.30 24.16 26.68 29.85
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Fig. 3. The magnitude and impulse response when M=8, L=16
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Fig. 4. The magnitude response when M=16, L=32

Next, we apply the designed filter banks to image coding ap-
plication. Table 2 shows the PSNR comparison of the proposed

and conventional method in various images. From these results,

the proposed method has comparable coding performance with the

conventional method and the high speed computation is possible.

5. CONCLUSION

In this paper, we proposed a new structure and design of the lin-

ear phase paraunitary filter banks with zeros at mirror frequencies.

This structure replace only first block of the conventional lattice

structure by two type II DCT with M
2

points, which has high speed
computation. The proposed method has comparable coding gain

and coding performance in image coding with the conventional

method inspite of less free parameters.
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