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ABSTRACT

Multi-dimensional datasets containing local averages of a

function arise in many applications such as processing of

CCD captures and medical images. Motivated by this fact

we introduce multi-dimensional average-interpolating refine-

ment on arbitrary lattices in arbitrary dimensions. Our re-

finement algorithm results in smooth scaling functions of

compact support. This method forms a basis for multi-dimen-

sional multi-resolution analysis and subdivision on datasets

obtained by locally averaging a smooth function. As an

example we present two-dimensional polynomial average-

interpolating subdivision on the quincunx lattice and show

that the resulting scaling functions are highly regular in the

sense of Sobolev.

1. INTRODUCTION

Refinement algorithms play a central role in multi-resolution

analysis and wavelet-based signal processing, e.g. in the

lifting scheme [1], and also in a variety of other fields, such

as computer graphics and numerical solutions to partial dif-

ferential equations, where subdivision algorithms have pro-

ved to be useful. We refer the reader to [2] and [3] for gen-

eral reviews of wavelets and stationary subdivision.

Until recently, most of the work in multidimensional

wavelet-based signal processing relied on a separable ex-

tension of one-dimensional wavelets using tensor products.

This approach, however, is restrictive and gives preference

to certain directions. For this reason designing multi-resolu-

tion analysis tools for non-separable lattices in multiple di-

mensions has become important [4, 1]. These tools also

allow wavelet-like analysis on manifolds [5].

In many applications one encounters datasets containing

local averages of a function defined over a bounded domain

in a multi-dimensional Euclidean space. Examples include

2D CCD captures and 3D CT scans. A refinement method

that would in the limit provide a smooth function with the

same local averages is thus desirable. Donoho in [6] intro-

duced one-dimensional average-interpolation and resulting

L2(R) wavelets on a uniform one-dimensional grid. In this

paper we extend this idea and develop average-interpolation

on arbitrary lattices in arbitrary dimensions. Multivariate

polynomial interpolation has been previously studied in the

work of Kovačević and Sweldens [7]. The authors, however,

know of no systematic method for “average”-interpolation

on arbitrary lattices in arbitrary dimensions in the literature,

except for the present exposition.

In what follows, after a review of lattices in R
m, in

section 2 partitionings of arbitrary domains are presented.

Multi-dimensional average-interpolation on arbitrary lattices

is developed in section 3. Section 4 contains as an example

a useful special case: polynomial average-interpolation on

the quincunx (a.k.a. checker-board, red-black) lattice. Fi-

nally, section 5 concludes the paper.

2. LATTICES AND PARTITIONINGS

In the following, N
m
0 stands for the set of non-negative inte-

ger m-tuples, and xp where x ∈ R
m and p ∈ N

m
0 denotes∏

1≤i≤m xpi

i . Let |p| :=
∑

1≤i≤m pi. #(A) denotes the

cardinality of the (finite) set A, and µ(R) represents a mea-

sure of the set R. We use terms from analysis and measure

theory.

2.1. Lattices in R
m

Lattices in R
m are formed from integral linear combinations

of m linearly independent vectors:

L(0) := GZ
m, det G �= 0 . (1)

A non-singular integer matrix D with all eigenvalues strictly

greater than 1 can be used to define M = det D (sub)lattices

at level n:

L(n) := GDG−1L(n−1) = GDn
Z

m . (2)

Since all of Z
m can be covered by DZ

m and M − 1 trans-

lates of it, lattices satisfy the following refinement equation.

L(n−1) =
⋃

0≤i<M

(
L(n) + t

(n)
i

)
. (3)
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Here t
(n)
i s are sub-lattice identifiers at level n and satisfy

t
(n)
i = GDG−1t

(n−1)
i = GDnG−1t

(0)
i , (4)

where t
(0)
i s represent sub-lattices at level 0 and t

(n)
0 = 0.

If we restrict G−1t
(0)
i s to the unit hypercube, they will be

unique.

Equation (3) can be viewed as a two-scale relation that

allows one to decompose a lattice at level n − 1 into M
sub-lattices at level n.

2.2. Partitionings

Definition 1. A partitioning ♦R
C of R ⊂ R

m over a count-

able set C ⊂ R
m is a collection of sets ♦R

C [ζ] of non-zero

measure indexed by members of C,

♦R
C = {♦R

C [ζ] ⊂ R|ζ ∈ C} , (5)

with the following properties:

1.
⋃

ζ∈C ♦R
C [ζ] is dense in R,

2. ♦R
C [ζ1] ∩ ♦R

C [ζ2] is of zero measure if ζ1 �= ζ2,

3.
∫

♦R
C [ζ]

x dµ = ζ, i.e. ζ is the centroid of ♦R
C [ζ].

We can construct a partitioning of R
m over Z

m by defin-

ing

♦R
m

Zm [z] := {x ∈ R
m|zi − 1

2
≤ xi < zi +

1
2
, 1 ≤ i ≤ m} .

(6)

Families of partitionings over L(n)s can be constructed

using

♦R
m

L(n) [ζ] := GDn♦R
m

Zm [z] (7)

where z ∈ Z
m and ζ = GDnz ∈ L(n).

Definition 2. A restriction of ♦R
C to E ⊂ C is denoted by

♦R
C|E and defined as

♦R
C|E := {♦R

C [ζ]|ζ ∈ E} . (8)

It gives a partitioning of RC|E := clos
⋃

ζ∈E ♦R
C [ζ] on E.

Notation 1. We denote by L1(♦R
C ) the set of all functions

that are µ-integrable over all ♦R
C [ζ]s.

3. AVERAGE-INTERPOLATION

3.1. Average-Interpolation Operator

Definition 3. For a class of functions F and a set E ⊂ L(n),

an operator

AF
L(n)|E : L1(♦R

m

L(n)|E) �→ clos Span F (9)

with the following property is a class F average interpola-
tion operator on ♦R

m

L(n)|E .

∫
♦Rm

L(n)|E
[ζ]

f dµ =
∫

♦Rm

L(n)|E
[ζ]

AF
L(n)|Ef dµ, (10)

∀ζ ∈ E, f ∈ L1(♦R
m

L(n)|E) .

AF
L(n)|Ef is said to be a class F average-interpolation of f

on ♦R
m

L(n)|E . It is important to note that this average interpo-

lation depends only on local averages of f on the partition-

ing (i.e.
∫

♦Rm

L(n)|E
[ζ]

f dµ’s) and not on the function itself.

Depending on the choice of F and E, this operator might

not exist or might not be unique. However, the following

theorem shows that we can always find such an operator for

any finite E ⊂ L(n) and a class consisting of multivariate

polynomials.

Theorem 1. For any finite E ⊂ L(n) with #(E) = K,
one can always find a class ΠL(n)|E average interpolation
operator on ♦R

m

L(n)|E , where ΠL(n)|E is a finite-dimensional
class of multivariate polynomials.

Proof. Denote members of E by ζi, 1 ≤ i ≤ K, and let pjs

give a sorting of N
m
0 . Consider the matrix M with elements

[M ]ij =

∫
♦Rm

L(n)|E
[ζi]

xpj dµ

µ(♦Rm

L(n)|E [ζi])
. (11)

Obviously rankMK×∞ ≤ K, and it is not difficult to

see that, due to the inclusion of all monomials of all degrees

in the formation of M , equality always happens. Therefore,

without loss of generality we can choose p1, . . . ,pK ∈ N
m
0

with |p1| ≤ |p2| ≤ · · · ≤ |pK | such that

P :=

⎛
⎜⎜⎜⎜⎜⎜⎝

∫
♦Rm

L(n)|E
[ζ1] x

p1 dµ

µ(♦Rm

L(n)|E
[ζ1])

· · ·
∫

♦Rm

L(n)|E
[ζ1] x

pK dµ

µ(♦Rm

L(n)|E
[ζ1])

...
. . .

...∫
♦Rm

L(n)|E
[ζK ] x

p1 dµ

µ(♦Rm

L(n)|E
[ζK ])

· · ·
∫

♦Rm

L(n)|E
[ζK ] x

pK dµ

µ(♦Rm

L(n)|E
[ζK ])

⎞
⎟⎟⎟⎟⎟⎟⎠
(12)

is full-rank and |pK | is minimum among all possible choices

of such K m-tuples in N
m
0 . Let us denote by ΠL(n)|E the

class of multivariate polynomials produced by monomials

xp1 , . . . ,xpK .

For a sequence aE [ζ], ζ ∈ E, of local averages of an un-

known function f ∈ L1(♦R
m

L(n)|E) we can therefore uniquely

solve the system of equations

P

⎛
⎜⎝

α1

...

αK

⎞
⎟⎠ =

⎛
⎜⎝

aE [ζ1]
...

aE [ζK ]

⎞
⎟⎠ , (13)
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which is equivalent to

∑
1≤j≤K

αj

∫
♦Rm

L(n)|E
[ζi]

xpj dµ

µ(♦Rm

L(n)|E [ζi])
= aE [ζi] =

∫
♦Rm

L(n)|E
[ζi]

f dµ

µ(♦Rm

L(n)|E [ζi])
,

(14)

for 1 ≤ i ≤ K .

Interchanging the order of summation and integration, for

1 ≤ i ≤ K we have∫
♦Rm

L(n)|E
[ζi]

( ∑
1≤j≤K

αjxpj

)
dµ =

∫
♦Rm

L(n)|E
[ζi]

f dµ .

(15)

Let A
Π

L(n)|E
L(n)|E f :=

∑
1≤j≤K αjxpj . We have therefore

found a class ΠL(n)|E average-interpolation of an arbitrary

L1(♦R
m

L(n)|E) function f on ♦R
m

L(n)|E .

E can be chosen such that ΠL(n)|E average-interpolates

♦R
m

L(n)|E and its translates ♦R
m

L(n)|E+t
(n)
i

. Moreover, dilated

versions of the monomials can be used at successive scales.

We use this fact in section 4 to keep the refinement mask

fixed across scales.

3.2. Average-Interpolation on L(n) Lattices

Using the average-interpolation operator introduced in the

previous subsection, we define an average-interpolation re-

finement scheme that exactly reproduces multivariate poly-

nomials up to a certain degree. This scheme consists of two

steps:

1. Insertion: In this step new vertices are inserted in the

lattice according to (3) and their associated values are

set equal to the local averages on a finer partition, of a

function that average-interpolates neighbouring sam-

ples.

2. Update: In this step the original sample values are

updated to match the local averages of the average-

interpolating function on the new (finer) partitioning.

Algorithm 1, that operates on a sequence {a(n)[ζ]} defined

on L(n) to create a sequence {a(n−1)[ζ]} on a finer lattice

L(n−1), demonstrates our scheme for M = 2. Here, E(n)

denotes a pre-chosen average-interpolation neighbourhood.

From the proof of theorem 1 we have for E′ ⊂ L(n) and

V ⊂ R
m

∫
V

AΠ(n)

L(n)|E′f

µ(V )
dµ

=

∫
V

(∑
1≤j≤K α′

jx
pj

)
dµ

µ(V )

=
∑

1≤j≤K

αj

∫
V

xpj dµ

µ(V )

=
(∫

V
xp1 dµ

µ(V ) · · ·
∫

V
xpK dµ

µ(V )

) (
α′

1 · · · α′
K

)T

=
(∫

V
xp1 dµ

µ(V ) · · ·
∫

V
xpK dµ

µ(V )

)
P−1

⎛
⎜⎝

aE′ [ζ1]
...

aE′ [ζK ]

⎞
⎟⎠ .

(16)

Insertion and update steps in algorithm 1 can therefore be

implemented using refinement masks.

By setting E(n) = GDnG−1E(0), this scheme can be

iterated, resulting in an average-interpolating function in the

limit, as for any integrable function g

lim
n→−∞

∫
♦Rm

L(n) [ζ
′] g dµ

µ(♦Rm

L(n) [ζ ′])
= g(ζ ′) . (17)

Depending on the choice of the average-interpolation

neighbourhoods E(n), this scheme can reproduce certain

polynomials up to a degree N ≤ |pK |. More specifically,

if E is chosen such that Π(n)
i s and Π(n)

u s are translation-

invariant, all polynomials in
⋂

n(Π(n)
i ∩ Π(n)

u ) can be ex-

actly reproduced.

4. EXAMPLE: QUINCUNX
AVERAGE-INTERPOLATING SUBDIVISION

For quincunx average-interpolation, one possible choice for

D and G matrices is

D =
(

1 −1
1 1

)
, G =

(
1 0
0 1

)
, (18)

which corresponds to a 45◦ rotation and
√

2 scaling at each

level.

We use neighbourhood rings for average interpolation,

as depicted in figure 1, and choose our average interpola-

tion operator such that insertion and update masks do not

change through scales. This is achieved by using a 45◦ ro-

tated version of the monomials at every other scale.

Insertion and update masks for closest neighbourhoods

of sizes 4 and 12 are summarized in table 1. These masks

exactly reconstruct polynomials of up to degree 1 and up

to degree 3 respectively. The associated scaling functions,

shown in figure 2, are of compact support. Moreover, the

Sobolev regularity exponents for these scaling functions,

calculated using the algorithm of [8], are significantly higher

than the values reported in [7] for quincunx interpolating

scaling functions of the same order (see table 2).
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Algorithm 1 Average-interpolation refinement scheme

1. Insertion:
for ζ ∈ L(n)

a(n−1)[ζ + t(n)]

=

∫
♦Rm

L(n−1) [ζ+t(n)]
A

Π
(n)
i

L(n)|(E(n)+ζ+t(n))
f dµ

µ(♦Rm

L(n−1) [ζ + t(n)])
end for.

2. Update:

for ζ ∈ L(n)

a(n−1)[ζ] =

∫
♦Rm

L(n−1) [ζ]
A

Π(n)
u

L(n−1)|(E(n)+ζ)
f dµ

µ(♦Rm

L(n−1) [ζ])
end for.

Fig. 1. Three neighbourhood rings, shown in shades of gray.

The dot marks the position of the new (inserted) sample.

(a) for neighbourhood of size 4. (b) for neighbourhood of size 12.

Fig. 2. Quincunx average interpolating scaling functions.

Table 1. Quincunx insertion and update masks.

Subdivision Operation Mask coefficients

neighbourhood size on ring 1 on ring 2
4 insertion 0.2500 –

4 update 0.2500 –

12 insertion 0.3229 −0.0365
12 update 0.3125 −0.0313

Table 2. Comparison of lower bounds on Sobolev ex-

ponents of average-interpolating (AI) and interpolating (I)

scaling functions.

Order Sobolev exp. (AI) Sobolev exp. (I)

1 4.859291 1.577645
3 5.070267 2.447923

5. CONCLUSION

In this work we have introduced average-interpolating re-

finement on arbitrary lattices in arbitrary dimensions. This

kind of refinement is especially useful for applications where

data samples are obtained by locally averaging a smooth un-

derlying function. As an example we have presented quin-

cunx average-interpolating subdivision and have shown that

the resulting scaling functions are significantly more reg-

ular than interpolating scaling functions introduced in [7].

In an upcoming paper we will introduce multi-dimensional

average-interpolating wavelets on arbitrary grids.
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