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ABSTRACT

In this paper, we derive the general estimation rule in the wavelet
domain to obtain the denoised coefficients from the noisy image
based on the multivariate statistical theory. We define a paramet-
ric multivariate generalized Gaussian distribution (MGGD) model
which closely fits the actual distribution of wavelet coefficients in
clean natural images. Multivariate model makes it possible to ex-
ploit the dependency between the estimated wavelet coefficients
and their neighbours or other coefficients in different subbands.
Also it can be shown that some of the existing methods based
on statistical modeling are subsets of our multivariate approach.
Our method could achieve high quality image denoising. Among
the comparable image denoising methods using the same type of
wavelet (esp. Daubechies 8) filter, our results produce compara-
tively higher peak signal to noise ratio (PSNR).

1. INTRODUCTION

Various recent works on image denoising using wavelet transforms
have shown that wavelet is an efficient tool for noise removal of
noisy images [1, 2, 3, 4, 5, 6]. Since wavelet transform divides
an image domain into the low and high frequency domains by its
filters, it is natural that some noise which is closely related to the
high frequency domain can be removed by killing some small co-
efficients in the high frequency part.

Wavelet coefficients are not strongly correlated, but they still
have dependency on each other. So many of the recent works such
as [2, 3, 6, 7, 8] take into account their dependency in order to
obtain a proper estimate. They show that incorporating different
information like neighbours and parents is helpful to preserve de-
tails and remove noise for natural image denoising. In addition, we
may consider some other information like coefficients in the finer
decomposition level (offsprings) or corresponding coefficients of
the other subbands in the same level. Hence, it is possible that we
can estimate a denoised wavelet coefficient using all the related
coefficients.

Our concerns lie in finding a general way to estimate the de-
noised wavelet coefficients using related coefficients such as neigh-
bours, parents and offsprings. We use multivariate Bayesian ap-
proach, which is classical yet powerful for estimating the denoised
coefficients. It can be shown that some of the existing methods
based on statistical modeling are subsets of our multivariate ap-
proach by changing the related elements and varying the distribu-
tion parameters.
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2. BAYESIAN ESTIMATION FOR MGGD MODEL

Let A be a clean natural image with size N x N, B a noisy im-
age which can be expressed as B = A + ¢C, and C zero-mean
Gaussian white noise, which is C~N (0, 1). ¢ is noise variance.

After performing multiresolution wavelet decomposition on
B, we get the wavelet coefficient y; x, which is the k-th wavelet
coefficient in j-th level for B. Due to the linearity of the wavelet
transform, we have y; r = xjr + 02;r, where x; 1 and z;  are
the wavelet coefficients of A and C respectively in the same loca-
tion as y; .

Let x be a d-dimensional wavelet coefficient vector, x =
(1,22, -, a:d)t, where z1 is the wavelet coefficient under con-
sideration and x; (i = 2,--- ,d) are the related coefficients to be
taken into consideration, e.g. neighbours, parent and offsprings.
Here for simplicity, we replace the double subscripts in z;,x by a
single subscript z;. The corresponding vectors y and z can be sim-
ilarly defined for the noisy image B and the noise C. We assume
that z;, y; and z; correspond to each other in both decomposition
level and location. Hence we have y = x + oz. For the sake of
simplicity, we omit subscripts j, k in the rest of the paper.

Our concern lies mainly in estimating the unknown wavelet
coefficient vector %, and % should be obtained only from y of the
noisy image B. One of the ways to estimate X is to use MAP
estimator to maximize p(x|y).

Theorem. By MAP estimator, the estimated clean vector X can be
expressed as :
x=y+0’Vg(%), e

where g(X) is In p(X).

Proof. From the usual MAP estimator for X can be obtained as
follows:

% = argmaxlnp(x|y)
xcRd

= argmax [Inp(y|x) + Inp(x)]. ()

Eq. (2) means that the optimal value X with minimum probability
error can be estimated by p(y|x) and p(x). p(y|x) is the multi-
variate Gaussian distribution with N (0, ¥, = ¢°I) since Gaus-
sian noise is independently and identically distributed for each el-
ement of the vector. Hence,

(y—x)'(y—x) 3)

d
Inp(y|x) = ~3 In (270”) — 557

We assume that p(x) is known. p(x) might vary depending on the
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type of sample images. From Egs. (2) and (3) :

p— t p—
% = argmax |—%m@ret) - FZXG=% 0
xerd [ 2 202
= arg max F(x), @)

xeRd

where g(x) = In p(x) and F(x) represents the term inside arg max.

If there exists X which satisfies F'(X) > linil F(x),Eq. 4)is
x; —+oo
equivalent to the solution of the following equation:

VFE) = —X=Y 4 (%) =0

o2
Sx=y+0°Vg(%). 5)
This completes the proof. O

The existing models for wavelet denoising are usually based
on univariate statistical model whereas p(x) is a multivariate pdf
in our model. There are several multivariate functions which are
symmetric spherically like multivariate Gaussian model. In our
paper, we use extended generalized Gaussian distribution (GGD)
model [9] for its simple form and to achieve good fitting errors.
We call this model multivariate generalized Gaussian distribution
(MGGD):

(o) = Vexp{ ((xu)tExl(Xﬂ)>ﬁ}7 ©

«

where a and (3 are parameters which can represent the spherical
shape of the model and « indicates a normalized constant defined
by a, 3 and the covariance matrix .

When the dimension of x is one (scalar), the MGGD is still
applicable and is denoted by UGGD. MGGD is a particular case
of the v-spherical distribution defined by Fernandez [10]. Using
MGGD model, we can derive more specific forms of Eq. (1). Since
we can assume that yu = 0,

Vg(x) = 7%(;(12;1)()“12;&. (7
6]
From Egs. (1) and (7),
2 —1
x = (zﬁ+2”ﬁ'g(ﬁt2;1§<)ﬂ*11) Yy, (8)
(6]

To simplify Eq. (8), we define g(%) = %*2'%. Hence :
20 3{g(3)}" " 1)

-2

Yzy- )

(%) = y' <E;( + 5
«
Egs. (8) and (9) allow us to solve for %.
However, there is no general solution for Eq. (9). To overcome
this problem, we can define a particular condition for a, 8 and X5
or use a numerical method.

3. MODEL SELECTION

Although we have derived the general formula for %, the best fit pa-
rameters « and 3 for MGGD model in Eq. (6) should be decided.
The parameters could be estimated by analyzing the distribution
of the wavelet coefficients for natural images. It is well-known
that the distribution of detailed wavelet coefficients from natural

— Sample distribution p,(x)
__ UGGD p, ()(o=114, B-1/2)
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0.05 0.05
9 B 30
Fig. 1. Distribution of sample coefficients and the estimated

UGGD function (using sample coefficients in HH subband of the
1st decomposition level).

Fig. 2. Norm of residue R contour (left) and — log R projection
(right) for varying MGGD parameters « and 3 for bivariate model.

images looks Gaussian-like with zero mean such as GGD [9]. We
have tried to find the closest MGGD model for each subband ana-
Iytically. 20 test images with 512x 512 size have been inspected to
extract enough sample coefficients. The test images are from free
images collected and offered by Computer Vision Group in Uni-
versity of Granada, Spain: http://decsai.ugr.es/cvg. In
this analysis, Daubechies 8 filter is applied to the image set for
the wavelet decomposition. The distribution parameters could be
slightly different depending on the mother wavelet.

Fig. 1 shows the difference between the sample distribution
and its estimated pdfs. As mentioned before, Gaussian distribution
in the left figure does not fit the sample distribution closely but
UGGD model with particular parameters is better adapted.

Our problem of determining best fit parameters can be cast
in terms of data-fitting problem. If we consider the mean square
differences between two distribution functions, the L2-norm of the
residual can be defined as follows:

1y P2(xl, B) ?
p1(x)

We do not use least square fitting function to obtain the parameters
which minimize R since there is a constraint that p; (x) > 0 and
p2(x) > 0, and p1 (x) can be zero when there is no sample points.
In addition, 1sqgcurvefit () function could cause an inaccurate
solution if p1(x) is unreasonably small. Instead, we observe the
relationship between the risk value R and the parameters « and 3.

As mentioned in our experiments, we use ten dimensional vec-
tor. It is not possible to show graphically the sample distribution
for the 10-dimensional model. Hence, instead of analyzing the
multivariate model which uses ten elements, a bivariate model is
analyzed as a specific and simple example of multivariate model.
Each data vector of the bivariate model is a pair of a coefficient
and its parent.

R = || Inpa(xla, B)—Tnpr (x)]| = H (10)

L2

IV -590



/ /

e

Fig. 3. Selected elements of vector x from wavelet coefficients in
our experiments (d = 10).

In order to obtain proper values of the parameters (v, 3) for
the bivariate model, we plot the distribution of R as function of
(e, B) in Fig. 2. A contouring region on the a/3-plane which
has the minimal values of R can be chosen for determining the
parameters. So the best fit parameters for the bivariate case are
roughly in the contouring region bounded by o € (0,0.8] and
B € [0.3,0.8]. The contour graphs in Fig. 2 can be different
depending on the image types or databases. It is difficult to find
one set of the best fit parameters for all cases. However, in our
experiments we found that the parameters are not different much
for different images.

For the higher-dimensional case, the best fit parameters for
MGGD model vary depending on the number and type of elements
(parent, neighbours, offsprings, etc.). However, we found that the
best fit parameters for the bivariate case are not far from those for
the 10 dimensional case which is used in our experiments with
certain types of natural images.

4. EXPERIMENTAL RESULTS

In our experiments, we choose 10 elements as depicted in Fig. 3.
As described in the previous section, proper parameters for the
statistical model are necessary for good estimation. This could be
difficult since they are decided case by case empirically depend-
ing on the type of images, the subband in wavelet domain and the
chosen elements of vector x. However, our experiments show that
when the parameters are chosen inside certain range as described
before, the denoising quality is very similar. For the chosen el-
ements in our experiments, we select the parameters of MGGD
model as &« = 1/6 and 8 = 1/2. These parameters are chosen
based on Fig. 2. We use them throughout our experiments. Since
the noise is independently distributed, the estimation of covariance
matrix X for a model is given by Sy = Yy — oI, where Xy is a
covariance matrix from given noisy wavelet coefficients. We use a
local covariance from 7x 7 neighbouring window which surrounds
each element of y. Recent works have empirically shown that the
local variance is usful for image denoising [3, 6].

Tables 1 and 2 list the PSNR’s of the proposed and other ex-
isting methods for two popular images, Lena and Boat. The re-
sults are categorized in terms of the type of the wavelet used since
denoising results are dependent on the wavelet transforms. Our
algorithm outperforms all other methods reported in the literature
when the same wavelet transform is used, in particular Daubechies
8 filter, which is the most popular scalar wavelet used for image
denoising.

Fig. 4. Cropped Lena image and its denoised images by some de-
noising methods using Daubechies 8 filter: Clean image (top-left);
Noisy image (6=20, 22.14dB, top-center); VisuShrink (26.59dB,
top-right); BayesShrink (30.14dB, bottom-left); GSM (31.03dB,
bottom-center); Proposed method (d=10, a=1/6, 3=1/2, 31.44dB,
bottom-right).

We also illustrate 128 x 128 size of cropped Lena image for vi-
sually compared evaluation in Fig. 4. It takes about 30 seconds for
a 512x512 image with Daubechies 8 filter on 2.4 GHz Pentium
IV PC when 10 elements are used. However, when %X can be cal-
culated explicitly without solving Eq. (8), it only takes less than 3
seconds under the same condition.

In Tables 1 and 2, we have made use of the functions in Wave-
Lab for VisuShrink and SureShrink. For the other existing meth-
ods, the experimental results are taken from the original papers
and the PSNR table in [6]. GSM results for Daubechies 8 fil-
ters are obtained from the software offered by Portilla [4]. If an
original paper shows the results in terms of mean squared error
(MSE), it is converted into PSNR value by the following formula

: PSNR(d@B) = 101log,, ,\2/,5—;; Also PSNR values from [6] are

converted by subtracting 0.03 dB since they define PSNR(dB) =

2
101log,, —1\2/1525'

In Section 3, we have analyzed the model and the estimated
parameters « and 3. The regions around the optimal values for «
and (3 are almost flat and have gentle slopes as seen in Fig. 2. Fig.
5 shows PSNR value distribution as function of the parameters a
and (3 by using 512x512 Lena image with 0=20 and d=10. The
desirable parameter coordinates (v, 3) lie in an elliptical narrow
shape and the graph has some similarity with the residue contour
graph in Fig. 2. One thing we need to consider about the parame-
ters is that their range could slightly vary depending on the image
type or image database. For example, the proper parameters from
nematode images could be different from the ones from nebula im-
ages. Therefore, it might be possible to get better image denoising
performance by varying the parameters depending on the cases.
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