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ABSTRACT

In this paper, the integral Fourier transform is described
as a specific wavelet-like transform with a fully scalable
modulated window, but not all possible translations. The
transform is defined by sinusoidal waves of half periods.
A geometrical locus of frequency-time points for the pro-
posed wavelet-like transform is derived and the function
coverage is described and compared with the short-time
Fourier transform as well as with the wavelet transform.

1. INTRODUCTION

The Fourier transform is considered traditionally as a trans-
form without time resolution, since the basis cosine and sine
functions are defined everywhere on the real line. Each Fou-
rier component depends on the global behavior of the signal.
Wavelet analysis has been developed as multiresolution sig-
nal processing, which is used effectively for signal and image
processing, compression, computer vision, medical imaging,
etc. [1]-[3]. In wavelet analysis, a fully scalable modulated
window is used for frequency localization [4]-[6]. The win-
dow is sliding, and the wavelet transform of a part of the
signal is calculated for every position. The result of the
wavelet transform is a collection of time-scaling representa-
tions of the signal with different resolutions.

In this paper, a new representation of the Fourier trans-
form is described, by cosine and sine wavelet-like transforms
with fully scalable modulated windows. The integral Fou-
rier transform uses a specific collection of time-scaling rep-
resentations of the signal with different resolutions. The
transform can be also considered as a discretization of a
integral wavelet transform. The Fourier transform uses the
translations of windows not for every position. The trans-
form provides the multiresolution signal processing because
cosine and sine type waveforms of every frequency are par-
ticipated in Fourier analysis.

2. FOURIER TRANSFORM WAVELET

We describe the integral Fourier transform by wavelet-like
transforms with cosine and sine analyzing functions. The
description differs from the well-known concept of the short-
time Fourier transform or windowed Fourier transform [1,
7, 8]. This transform is based on a joint time-frequency

signal representation and is defined by

F (t, ω) =

∞∫
−∞

f(τ )g(τ − t)e−jωτdτ (1)

where t, ω ∈ (−∞, +∞). A time-sliding window function
g(t) is used to emphasize ”local” frequency properties. The
window function is typically considered to be symmetric
and with unit norm in the space of square-integrable func-
tions. For instance, the Gaussian function g(t) = (

√
πσ)−1

exp(−t2/σ) with a symmetric finite support can be taken,
where σ > 0 is a fixed number defining a ”width” of the
window.

The inverse short-time Fourier transform is defined by

f(t) =
1

2π

∞∫
−∞

∞∫
−∞

F (τ, ω)g(t− τ )ejωtdωdτ. (2)

Let ψ(t) and ϕ(t) be functions that coincide respectively
with the cosine and sine functions inside the half of period
interval [−π/2, π/2) and equal zero outside this interval

ψ(t) =

{
cos(t), t ∈ [−π/2, π/2)

0, otherwise

ϕ(t) =

{
sin(t), t ∈ [−π/2, π/2)

0, otherwise.

(3)

We consider a family {ψω;bn
(t), ϕω;bn

(t)} of time-scale
and shift transformations of these functions

ψω;bn
(t) = ψ(ω[t − bn])

ϕω;bn
(t) = ϕ(ω[t − bn])

where t ∈ (−∞,+∞), frequency ω varies along the real
line, and bn takes values of a finite or infinite set to be
defined below. Let f(t) be a function for which the Fourier
transform exists

F (ω) =

∞∫
−∞

f(t) cos(ωt)dt− j

∞∫
−∞

f(t) sin(ωt)dt.

For a given frequency ω �= 0, the process of F (ω) com-
ponent formation, when the cosine and sine waveforms of
frequency ω are interfering with f(t), can be described in
the following way. We consider the partition of the time line
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by intervals of length π/ω with centers at integer multiples
of π/ω

In = In(ω) =

[
(2n − 1)π

2ω
,
(2n + 1)π

2ω

)
, n = 0,±1,±2, ... .

The integral of the Fourier transform F (ω), ω �= 0, can
be split by intervals In(ω) and written as follows

F (ω) =

∞∑
n=−∞

∫
In

f(t) cos(ωt)dt− j

∞∑
n=−∞

∫
In

f(t) sin(ωt)dt

=
∞∑

n=−∞

(−1)n

⎡
⎣

∞∫
−∞

f(t)ψ
(
ω
[
t − π

ω
n
])

dt

−j

∞∫
−∞

f(t)ϕ
(
ω
[
t − π

ω
n
])

dt

⎤
⎦ .

We now introduce the following transforms of the func-
tion f(t)

Fψ(ω, bn) =

∞∫
−∞

f(t)ψω,bn
(t) dt

Fψ(0, 0) =

∞∫
−∞

f(t)dt

(4)

and

Fϕ(ω, bn) =

∞∫
−∞

f(t)ϕω,bn
(t) dt

Fψ(0, 0) = 0

(5)

where bn = bn(ω) = (π/ω)n, when n is an integer. It is
assumed that bn ≡ 0 if ω = 0.

Fψ(ω, bn) is the integral of the cosinusoidal signal ψ(ωt)
of the half-period π/ω, which is multiplied on f(t) waveform
at location bn. The signal ψ(ωt) is moving along f(t) wave-
form at locations bn being integer multiples of π/ω. The
locations depend on the frequency ω. In a similar way, the
transform Fϕ(ω, bn) is defined by the inner product of f(t)
waveform with the sinusoidal signal ϕ(ωt) of the half-period
π/ω, when moving at the same locations bn.

The complex Fourier transform is composed by the pair
of real transforms Fψ(ω, bn) and Fϕ(ω, bn) as

F (ω) =
∞∑

n=−∞

(−1)nFψ(ω, bn) − j
∞∑

n=−∞

(−1)nFϕ(ω, bn).

(6)
These transforms are calculated in the following set of

points in the frequency-time plane

B =
{

(ω, bn); ω ∈ (−∞,+∞), bn = n
π

ω
,

n = 0,±1,±2, . . . ,±N(ω)
} (7)

where N(0) = 0, and N(ω) is the infinite in general, or a
finite number if the function f(t) has a finite support. Given
an integer n, we call the set of points Bn = {(ω, bn); ω ∈
(−∞, +∞)} to be the nth center-line in the frequency-time

plane. The locus B is the union of such center-lines, B =
{∪Bn; n = 0,±1, . . . ,±N(ω)}.

Let f(t) be cos(ω0t) waveform with frequency ω0 = 1.3,
which is defined in the interval [−3π, 3π]. We consider the
Fourier transform of the waveform in the frequency interval
[0, 3π]. Figure 1 shows the following set of frequency-time
points

B =
{

(ω, bn); ω ∈ (0, 3π), bn =
πn

ω
,

n = 0,±1,±2, . . . ,±N(ω)
} (8)

where N(ω) is defined as

N(ω) =

⎧⎨
⎩

0, if ω < 1/6⌊
3ω − 1

2

⌋
, if ω ∈ (1/6, 3π)

(9)

and the operation �·� denotes the floor function. The num-
ber of center-lines in the set B is 55, i.e. N(ω) ≤ 27. Ho-
rizontal lines with centers located at a few points (ω, bn)
of the set B show the widths, π/ω, of the corresponding
cosine and sine basis signals ϕ(ωt) and ψ(ωt) of transforms
Fψ(ω, bn) and Fϕ(ω, bn), respectively.
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Fig. 1. The locus of time-frequency points for the B-wavelet
transform.

The function N(ω) defines the required number of shif-
ted versions of signals ψ(ωt) and ϕ(ωt) for calculation of va-
lues of transforms Fψ(ω, bn) and Fϕ(ω, bn) for frequency ω.
For instance, when 0 < ω < 1/6 the only signals ψ(ωt) and
ϕ(ωt) will be multiplied with f(t) and then integrated to
define Fψ(ω, 0) and Fϕ(ω, 0). No more translations of these
signals are required for calculation of the Fourier transform
F (ω) at these frequencies. We can consider that Fψ(ω, bn) =
0 and Fϕ(ω, bn) = 0 if n �= 0.

When ω ∈ (1/6, 1/2) the signals ψ(ωt) and ϕ(ωt) are
required to be shifted to the right and left by π/ω. To cal-
culate the Fourier transform F (ω) at such frequencies, the
only following values are needed

Fψ (ω, 0) , Fψ

(
ω,

π

ω

)
, Fψ

(
ω,−π

ω

)
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and

Fϕ (ω, 0) , Fϕ

(
ω,

π

ω

)
, Fϕ

(
ω,−π

ω

)
.

In the general case, the number of required translations
M(ω) = 2N(ω) + 1 can be defined as the following step
function

M(ω) =

⎧⎨
⎩

1, if 0 < |ω| ≤ 1

6

2n + 1, if
2n + 1

6
< |ω| ≤ 2n + 3

6
.

We can consider that Fψ(ω, bn) = 0 and Fϕ(ω, bn) = 0,
when |n| > N(ω).

To calculate the Fourier transform of f(t), the values of
transforms Fψ(ω, bn) and Fϕ(ω, bn) are required at frequen-
cy-time points of set B. Figure 2 shows the 3-D plot of
required values of the transform {Fψ(ω, bn); (ω, bn) ∈ B}
versus the frequency ω and location b. The 3-D plot of the
transform {Fϕ(ω, bn); (ω, bn) ∈ B} is given in Fig. 3.
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Fig. 2. Wavelet transform plot of the signal f(t) = cos(ω0t)
with the cosine analyzing function.

The representation of f(t) by the pair of transforms
Fψ(ω, bn) and Fϕ(ω, bn) (or by Fψ(ω, bn) − jFϕ(ω, bn)) we
name to be the B-wavelet transform. The transforms

f(t) → {Fψ(ω, bn), (ω, bn) ∈ B}
f(t) → {Fϕ(ω, bn), (ω, bn) ∈ B}

we call to be respectively the cosine and sine B-wavelet
transforms.

Set B can be considered as an ”optimal” geometrical lo-
cus of frequency-time points for the integral Fourier trans-
form defined by the B-wavelet transform. There is no need
in calculation of the B-wavelet transform across the whole
range of frequency-time points, but the points of B set. The
integral Fourier transform can be derived from B-wavelet
transform by (6).

The analysis of the introduced B-wavelet representation
shows that the Fourier transform can be described as a pair
of integral wavelet transforms sampled by only translation
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Fig. 3. Wavelet transform plot of the signal f(t) = cos(ω0t)
with the sine analyzing function.

parameter. These wavelet transforms are defined by

Tψ(ω, b) =

∞∫
−∞

f(t)ψω,b(t)dt

Tϕ(ω, b) =

∞∫
−∞

f(t)ϕω,b(t)dt

(10)

where ω, b ∈ (−∞,∞). The integral of ψ(t) does not equal
zero. However the simple shift by π/2 yields this property,
and such a shift can be taken as a basis function for the
transform Tψ. In this case, the locus for this transform will
be another set of frequency-time points B′ = {(ω, b′n); b′n =
bn + π/2ω, ω ∈ (−∞, +∞), n = 0,±1,±2, . . .}.

Locus B of frequency-time points differs from grids used
for sampling the short-time Fourier transform and the wave-
let transform. For the short-time Fourier transform, a sin-
gle window is used for all frequencies. The resolution of the
analysis is the same at all locations in the time-frequency
domain. When sampling the short-time Fourier transform,

F (t, ω) → Fn,m = F (nt0, mω0), n, m = 0,±1, . . . ,

a regular rectangular grid is used with time and frequency
steps t0 and ω0, that satisfy the frame bound condition
t0ω0 ≤ 2π [9]. One can note that for the B-wavelet trans-
form the condition ωb1(ω) = π holds for all frequencies ω.

For traditional integral wavelet transforms, short high-
frequency and long low-frequency windowed functions are
used for all translations. The windows are overlapped, be-
cause of continuously shifting them, and the wavelet co-
efficients are therefore highly redundant. When sampling
the wavelet transform T (a, b), two parameters are chosen,
a time-step a0 > 1 and location b0 > 0. The frames are
constructed by sampling the dilation exponentially a = an

0

and the translation b proportionally an
0 , as follows

T (a, b) → Tn,m = T (an
0 , mb0a

n
0 ) , n, m = 0,±1, . . . .
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We now illustrate changes in the B-wavelet representa-
tion of the Fourier transform when a signal is degraded by
a short-time sinusoidal signal. Let f(t) be cos(ω1t) wave-
form of frequency ω1 = π/3 defined in the time interval
(−3π, 3π). We assume that in the interval (−1.5, 1.5) a si-
nusoidal component n(t) = 0.5 sin(ω2t) has been added to
f(t). This short-time signal has a frequency six times that
ω1, i.e. ω2 = 2π, The signal to be analyzed by the B-
wavelet-transform is (see Fig. 4)

g(t) =

{
f(t) + n(t), |t| < 1.5

f(t), 1.5 ≤ |t| < 3π.
(11)

Figure 5 shows the projection of the 3-D transform plot of
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Fig. 4. Cosine waveform with a high-frequency short-time
signal.

the original signal f(t) in the time domain. Tψ transform
part of the B-wavelet transform is only illustrated. Figure 6
shows the projection of the 3-D B-wavelet transform plot of
the observed signal g(t) in the time domain. The addition
noise signal n(t) leads to the change of the transform plot
at locations bn lying in the interval (−1.5, 1.5). Namely,
main changes occur in the time interval (−1.5, 1.5) along
two center-lines Bn = {bn(ω) + π/ω; ω ∈ (0, 3π)}, where
n = 1 and −1.
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Fig. 5. Wavelet transform plot of the signal f(t) with the
cosine analyzing function (projection on the time domain).

3. CONCLUSION

A concept of the B-wavelet transform has been introduced
and representation of the integral Fourier transform by this
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Fig. 6. Wavelet transform plot of the signal g(t) with the
cosine analyzing function (projection on the time domain).

transform has been described. The B-wavelet transform
is defined on a specific set B of points in the frequency-
time plane. This transform uses a fully scalable modulated
window but not all possible locations. We assume to study
and develop the Fourier approach to signal analysis and
examine practical applications of the proposed B-wavelet
transform in signal processing.
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