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ABSTRACT

Many real world data sets can be viewed as points in a higher-
dimensional space that lie concentrated around a lower-dimensional
manifold structure. We propose a new multiscale representation
for such point clouds based on lifting and perfect matching. The
result is an adaptive wavelet transform that decomposes a point
cloud into manifold approximations and details at multiple scales.
We illustrate with several examples that the transform can extract
an unknown smooth manifold from noisy point cloud samples us-
ing simple wavelet thresholding ideas.

1. INTRODUCTION

Algorithms for processing high-dimensional data are becoming in-
creasing important for applications such as computer vision, pat-
tern recognition, learning theory, remote sensing, image process-
ing, biomedicine, and computer networking. For example, in some
cases an n × n image can be viewed profitably as a point in R

n2
-

dimensional space. However, even with today’s most advanced
computational tools, the dimensionality of the data is often pro-
hibitively large for conventional multidimensional signal process-
ing tools.

Handling huge high-dimensional data sets requires special al-
gorithms that exploit the inherent structures hidden in the data.
Due to the nature of the underlying physics that govern data gen-
eration, many practical data lie along a low-dimensional nonlinear
manifold in the high-dimensional space.

In many cases of practical importance, we do not have an an-
alytic formula describing the manifold but instead merely point
samples that implicitly specifying the manifold. In many practi-
cal cases, the samples are noisy and thus form a fuzzy cloud of
points around the unknown manifold. This motivates the prob-
lem of manifold estimation from noisy samples. Moreover, even
when the samples are noise-free, the points can be highly redun-
dant, which motivates the problem of manifold representation and
compression.

In this paper, we take some first steps towards a multiscale
representation for point clouds that are concentrated around piece-
wise smooth manifolds. Using a nonlinear lifting scheme [1] on
the point locations, we develop a wavelet transform that adapts to
the local manifold geometry. At each of a nested set of scales,
the transform creates an increasingly smoothed, lower-resolution
manifold (scaling coefficients) and a set of inter-scale differences

Email: {choi, richb}@rice.edu. Web: dsp.rice.edu. This work was
supported by NSF grant CCF-04-31150, ONR grant N00014-02-1–0353,
AFOSR grant FA9550-04-10148, and the Texas Instruments Leadership
University Program.

(wavelet coefficients). For smooth and piecewise smooth mani-
folds, the wavelet coefficients are sparse, which allows us to con-
cisely represent the manifold geometry. This sparsity can be ex-
ploited to extract the underlying manifold geometry from a noisy
point cloud, effectively distinguishing the manifold geometry in-
formation from the noise. In short, the manifold wavelet trans-
form allows us to apply the gamut of powerful wavelet-based sig-
nal processing tools on problems involving high-dimensional point
clouds.

A related multiscale representation for point clouds [2] uses a
simplified form of lifting to represent and then progressively en-
codes the point locations. The lifting algorithm proposed here is
fundamentally different in that it provides a multiscale representa-
tion of the underlying manifold geometry, not the locations of the
individual points.

This paper is organized as follows. Section 2 reviews lifting,
and Section 3 develops our manifold wavelet transform. In Sec-
tion 4, we apply the transform to extract a manifold from two noisy
point clouds. Section 5 closes the paper with a discussion and di-
rections for future research.

2. LIFTING

The lifting scheme [1] was developed to enable linear, nonlinear,
and adaptive wavelet transforms on complex geometries and with
nonuniformly sampled data. All of the above are very difficult to
handle using traditional wavelet analysis based on filterbanks. As
illustrated in Fig. 1(a), a typical lifting stage consists of three steps:
Split, Predict, and Update. Let x[n] be a signal.

Split: Divide x[n] into its even and odd polyphase components
xe[n] and xo[n], where xe[n] = x[2n] and xo[n] = x[2n + 1].

Predict: Predict the odd samples xo[n] from the neighboring
even samples xe[n]. Denoting the predictor output by P (xe)[n],
the prediction residual (the wavelet coefficient) is given by

d[n] = xo[n] − P (xe)[n]. (1)

If the underlying signal is locally smooth, then the wavelet coef-
ficient d[n] will be small. The prediction procedure essentially
applies a high-pass filter to x[n].

Update: The final lifting step transforms the even samples
xo[n] into a lowpass filtered and subsampled version of x[n]. By
adding a linear combination of d[n] to xe[n], we obtain the scaling
coefficients

c[n] = xe[n] + U(d)[n], (2)

where U(d)[n] is the output of the update block. After the update
step, the wavelet and scaling coefficients are properly normalized.
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Fig. 1. Lifting steps: Split, Predict, and Update. Inverse lifting
steps: Undo update, Undo prediction, and Merge.

To analyze the signal into multiple scales, we can repeatedly
apply the lifting stages to the scaling coefficients. Each lifting step
is easily invertible as we see in Fig. 1(b).

Any conventional wavelet transform can be implemented as a
concatenation of lifting stages [1]. For example, the simplest Haar
wavelet transform can be implemented as

d[n] = 0.5(xo[n] − P (xe)[n]) = 0.5(xo[n] − xe[n]) (3)

and
c[n] = xe[n] + U(d)[n] = xe[n] + d[n]. (4)

In our manifold wavelet transform, we will predict point sam-
ples using a local hyperplane fit to the local manifold geometry
and an update similar to the Haar update in (4).

3. WAVELET TRANSFORM ON POINT SAMPLES

Using lifting, we now develop a multiscale representation for sam-
pled d-dimensional manifolds in D-dimensional space (d < D).
There are two important distinctions with the setting of conven-
tional wavelet transforms. First, unlike signals and images that are
functions defined over a fixed domain, here the manifold geome-
try is hidden in the locations of the point samples. Second, there
is no natural organization of the sample points along the line or
plane, complicating the definition of an “even” and “odd” split of
the samples.

The Split step described in Sec. 2 pairs up neighboring even
and odd coefficients. For smooth data, this results in the small-
est possible wavelet coefficients. With point cloud data, how to
perform such a pairing is not evident. Fortunately, the problem of
optimally pairing an even number of points has received consid-
erable attention in graph theory under the name minimum-weight
perfect matching [3], and there are fast algorithms available [4].

Split: Our Split step pairs up an even number of points based
on the Euclidean distances between points using perfect match-
ing. The pairing is globally optimal in the sense that the sum of
pairwise distances is minimum among all possible pairings. The
pairing naturally splits the point set into two subsets of the same
size. We randomly label the two points in each pair as even and
odd. For example, in Fig. 2 the crosses and circles represent even
and odd points, respectively. Note that each even point is paired

with a nearby odd point. While the points do not have a natural
ordering, we denote the paired even and odd points by pe[n] and
po[n] using an abstract index n.

wavelet coefficient

updated even point

centroid of neibors of even points

Fig. 2. Lifting manifold samples. The points are split into
even/odd pairs using perfect matching. Each odd point (blue cir-
cle) is predicted by computing the centroid (square) of the set com-
prising its even mate (blue cross) and its neighboring even points.
The difference is the wavelet coefficient (red arrow). Then, each
even point is updated by subtracting the wavelet coefficient to ob-
tain the scaling coefficient (circle with cross).

Predict: Once the split is achieved, we predict each odd point
po[n] (see Fig. 2) using nearby even points. Assuming that the
points lie on a locally smooth manifold, it is natural to expect that
the predictor should predict a point on the manifold that is close to
the current odd point. We form a linear approximation to the local
manifold geometry by fitting a d-dimensional hyperplane to the lo-
cal subset of even points. The subset of even points can be easily
obtained by considering the neighbors of the even point pe[n] that
was paired up with po[n] (all the even points in the green circle
in Fig. 2). In our current implementation, we use all neighboring
even points within a certain distance from pe[n]. The radius of
neighborhood should be set properly for different manifold struc-
tures and noise variance, because it governs the stability of the
local plane fitting.

While any point on the hyperplane can be a candidate pre-
diction, the simplest choice is the centroid of the neighboring even
points. Note that the centroid lies on the least-squares best fit plane
to the even points. When the sampling distribution is close to uni-
form, the centroid will be close to po[n].

Given this predictor, the wavelet coefficient is defined as the
difference between the current odd point and the predicted point.
In summary, denoting the neighbors of pe[n] as N (pe[n]), we can
write the prediction step as

d[n] = po[n] −
∑

N (pe[n])

pe[i]. (5)

In Fig. 2, the red vector represents the wavelet coefficient d[n].
Note its short length.

Since the centroid of the neighboring even points is expected
to be very close to the manifold, the wavelet coefficients thus en-
code the locations of the points relative to the manifold. Since the
innovation in geometry introduced by each point is mainly con-
tained in the direction orthogonal to the local manifold geometry,
we can further decompose each wavelet coefficient d[n] into nor-
mal and tangential components based on the local coordinates de-
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fined by the locally fit hyperplane. The normal component is the
orthogonal projection of d[n] onto the hyperplane’s normal and is
related to the manifold geometry. The tangential component is the
orthogonal projection of d[n] onto the hyperplane and encodes the
distribution of the points on the manifold (with respect to the local
centroids).

Update: The update step works on the even samples to cre-
ate a smoothed and subsampled version of the original points for
processing at the next coarse scale. For point samples on a man-
ifold, smoothing means moving the points closer to the manifold.
Recalling that the wavelet coefficients represent the offset of each
odd point from the locally fit hyperplane and assuming that the cur-
rent even point pe[n] to be updated is very close to the odd point
po[n] with which it has been paired, we can subtract the wavelet
coefficient from the even point to move closer to the plane. This is
similar to the update step corresponding to the Haar wavelet in (4)
in that only a single wavelet coefficient is used to update. That is,
the updated coarse scale points are given by (see Fig. 2)

c[n] = pe[n] − d[n]. (6)

Iterating on the scaling coefficients creates a multiscale trans-
form with 2× fewer points at each scale, independent of the di-
mensions d of the manifold and D of the ambient space. This is in
sharp contrast to other multiscale techniques for multidimensional
data that decimate by 2D at each scale. To construct a complete
binary tree of scaling and wavelet coefficients, we assume that the
total number of samples is a power of two.

4. MANIFOLD EXTRACTION VIA WAVELET
THRESHOLDING

The manifold wavelet transform provides a convenient framework
for representing and processing manifold geometry at multiple scales.
This can be useful for extracting and modeling different features
of the manifold. In particular, since the wavelet coefficients rep-
resent prediction errors from a smoothed version of the manifold,
thresholding the wavelet coefficients can remove noise in the sam-
ple locations, resulting in samples closer to the original manifold.
In this section, we apply our transform to extract a smooth mani-
fold from a noisy point cloud of samples.

4.1. Wavelet thresholding

The manifold wavelet transform provides a sparse approximation
of the manifold geometry. When the points are noisy, the sparsity
allows simple but effective noise removal by wavelet thresholding
[5].

However, processing the wavelet coefficients of a manifold re-
quires extra caution since each wavelet coefficient consists of two
distinct parts: its tangential and normal components. Each wavelet
coefficient is the prediction error resulting from predicting a point
location from its neighbors. The prediction is possible because all
of the points lie along a lower-dimensional manifold. However,
while the points are close to the manifold, when projected onto the
manifold, they will be distributed randomly on the manifold. This
implies that only the normal components of wavelet coefficients
are predictable. The tangential components are purely random and
are related to the distribution of points along the manifold.

Thus, when we threshold the wavelet coefficients, we should
retain the tangential components of wavelet coefficients in order to
preserve the point distribution along the manifold. By thresholding

the normal components, we draw the points closer to the manifold,
effectively attenuating the noise in the point samples.

Figures 3 and 4 demonstrate denoising of manifold point sam-
ples through wavelet thresholding. The first two plots show the
original smooth 2-dimensional manifold in R

3 and 8192 points
from the manifold with Gaussian noise added to their point lo-
cations. After computing 5 scales of lifting, we thresholded the
normal components of the wavelet coefficients and inverted the
transform to obtain the points shown in the last plot. Note that
these points that are much closer to the original manifold.

Fig. 3. Thresholding result for a 2-dimensional surface in R
3. Left:

original manifold. Middle: noisy point samples. Right: points
after wavelet thresholding. The two point sets are viewed along
the y-axis to highlight their variability away from the underlying
manifold.
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Fig. 4. Thresholding result for a 2-dimensional surface in R
3. Top:

original manifold. Below left: noisy point samples. Below right:
points after wavelet thresholding.

4.2. Wedgelet manifold extraction

We now provide an example of manifold extraction from noisy
samples in high-dimensions. Consider the manifold consisting of
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wedgelet image blocks [6]. A wedgelet is a square n× n block of
image pixels containing an ideal step edge at a certain angle and
offset from the center. Thus the collection of all wedgelets defines
a locally 2-dimensional manifold in R

n2
. In our experiment, we

generated 5×5 pixel blocks of wedgelets with various edge orien-
tations and offsets. The ideal edge is pixelized by computing the
averaging an ideal wedgelet over each pixel.

First we generated 8192 5 × 5 ideal wedgelets having various
orientations and offsets. Then, we added random Gaussian noise
to each pixel to obtain the noisy wedgelets at the top of Fig. 5.

noisy wedgelets

samples from extracted manifold

Fig. 5. Wedgelet manifold extraction from 8192 noisy 5 × 5
wedgelets of various orientations and offsets. Top: original noisy
wedgelets (100 randomly picked). Bottom: Images corresponding
to sample points after wavelet thresholding based manifold extrac-
tion (100 randomly picked).

After performing 5 stages of lifting, we thresholded the normal
components of wavelet coefficients and inverted the lifting stages.
The result is an estimate of the underlying manifold that exploits
the fact that it is piecewise smooth. Note that the bottom images
in Fig. 5 are not denoised versions of the top images. Instead, the
bottom images are points that lie much closer to the underlying

manifold than the points in the top images. Note that they are
essentially smoothed wedgelets. This implies that the extracted
manifold is a smoothed version of the ideal wedge manifold.

5. CONCLUSIONS

In this paper, we have developed a multiscale wavelet transform for
point clouds lying along a nonlinear manifold in high-dimensional
space. Using the lifting concept to adapt to the local manifold
geometry, we obtain a multiscale representation of point samples
from on manifold. Using simple wavelet thresholding, we were
able to make a reasonable estimate of the manifold structure from
a fuzzy cloud of points.

Although we obtained promising preliminary results, much
work remains. Our proposed scheme is based on a linear approx-
imation of the local manifold geometry. More accurate model-
ing using higher-order prediction and update steps would provide
sparser representations. Furthermore, the asymptotic approxima-
tion rate requires further analysis. Finally, our current algorithm
seems to be quite sensitive to the choice of neighbors in the pre-
diction step. The optimal and adaptive choice of the neighbors to
preserve stability based on the sample distribution in the point data
set remains as an interesting future research topic.
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