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ABSTRACT

Lattice structure has several advantages over the tapped delay line
form, especially for the hardware implementation of general digi-
tal filters. It is also efficient for the implementation of Quadrature
Mirror Filter (QMF), because the Perfect Reconstruction (PR) is
conserved even under the severe coefficient quantization. More-
over, if lattice coefficients are implemented by Signed Powers-of-
Two (SPT), the hardware complexity can also be reduced. But the
discrete space represented by the SPT is sparse when the num-
ber of non-zero bits is small. This paper proposes an orthogonal
QMF lattice with SPT coefficients that can provide much denser
discrete coefficient space than the conventional structure. For this
purpose, we employ CORDIC algorithm that is structurally related
with the PR lattice filter with SPT coefficients. The paraunitariness
of CORDIC subrotation also continues to hold the PR condition to
our wishes. Since the proposed architecture provides denser coef-
ficient space, it shows less coefficient quantization error than the
conventional QMF lattice.

1. INTRODUCTION

The Quadrature Mirror Filter (QMF) banks [1] shown in Fig. 1
(a) have a number of applications in digital signal processing. It
can be verified that if analysis filters H0(z), H1(z), and synthe-
sis filters F0(z), F1(z) constitute the paraunitary (PU) filter bank,
then the system is a Perfect Reconstruction (PR) system, i.e., x̂(n)
is scaled and delayed version of x(n). Analysis bank of Fig. 1
(a) can be implemented in the lattice form shown in (b). In prac-
tical hardware implementation of Fig. 1 (b), lattice coefficient αn

needs to be quantized for fixed-point arithmetic. For more efficient
implementation, using constrained Signed Powers-of-Two (SPT)
coefficients is a good alternative because multiplication can be re-
placed by simple shift/add operation. The QMF lattice has the
advantage that the PU is conserved even under severe coefficient
quantization [1]. Lattice coefficient is selected in a set of sums of
SPT represented as

αn =
M∑

k=1

sk,n2−pk,n for n = 0, 1, ..., N,

sk,n ∈ {−1, 1}, pk,n ∈ {−2,−1, 0, 1, · · ·, B}. (1)

Each coefficient has (B + 3)-bit wordlength and M non-zero bits
that determine the density of discrete coefficient space, i.e., B and
M determine the amount of possible numbers represented by (1).
For obtaining sk,n and pk,n which provide a good frequency re-
sponse, we need to employ an appropriate optimization technique

(a)

(b)

Fig. 1. (a) Two channel QMF bank, (b) Analysis bank of two
channel PR lattice filter.

rather than simple rounding of infinite precision coefficients. In
the case of FIR filter design, many optimization techniques have
been developed based on global or local optimization [3], since
Lim and Parker [2] proposed Mixed Integer Linear Programming
(MILP) over a discrete SPT coefficient space. But these conven-
tional optimization methods cannot be used for the optimal selec-
tion of the lattice coefficient, because lattice coefficient obtained
after the quantization of FIR coefficient no longer guarantees the
PR condition. The MILP cannot be applied to the lattice structure,
also because the FIR coefficient is not a linear combination of lat-
tice coefficients. Thus, the αn should be directly quantized using
local optimization techniques.

Although many papers have discussed the optimization of lat-
tice filter bank with SPT coefficients [4, 5], the modification of
discrete coefficients space has rarely been reported in the litera-
ture. In this paper, we develop a new structure of multiplierless
two-channel PR lattice filter bank that has more dense discrete co-
efficient space. In other words, we propose a lattice structure that
can have larger number of possible coefficients with the given B
and M than the conventional methods. As a result, the coefficient
quantization error can be largely reduced.

For this purpose, we employ the COordinate Rotation DIgital
Computer (CORDIC) which is an effective method for calculating
vector rotation [6–8]. More specifically, proposed design provides
more dense space based on the following two techniques. The first
is to use a cascade of various CORDIC subrotations [8], whereas
the conventional method considers only one subrotation. The sec-
ond is to add rotation angles of π/2 + θ and π/2 − θ with the as-
sumption that θ is a candidate of rotation angle. For the case where
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M = 2, the proposed method provides about three times as dense
distribution as conventional SPT without the expense of additional
hardwares. Moreover, if M = 3, it provides nine times. The pro-
posed methods continue to hold the PR condition by preserving
the unitariness of rotation. Moreover, the angle distribution of the
proposed structure is relatively uniform compared to the conven-
tional method. Design examples show that the proposed method
can largely reduce the overall quantization error, and improve the
filter performance.

2. PR QMF LATTICE WITH SPT

Fig. 1 (a) shows QMF bank that is the two-channel version of
the maximally decimated filter bank. Assuming no degradation in
channel, the reconstructed signal x̂(n) can be related to x(n) by

X̂(z) = T (z)X(z) + A(z)X(−z) where

T (z) =
1

2

[
H0(z)F0(z) + H1(z)F1(z)

]
distortion term,

A(z) =
1

2

[
H0(−z)F0(z) + H1(−z)F1(z)

]
aliasing term.

(2)

T (z) must be z−2N−1 for no distortion, and A(z) be zero for alias
cancellation, and then the PR condition that x̂ = x(n − 2N − 1)
is satisfied. To satisfy these constraints, low pass filter H0(z) with
order 2N + 1 needs to be designed satisfying power-symmetry
property represented as [1]

H̃0(z)H0(z) + H̃0(−z)H0(−z) = 1 (3)

where H̃(z) =
[
H(z)

]∗
. Then, the other three filters are designed

as follows.

H1(z) = −z−N H̃0(−z),

F0(z) = 2z−N H̃0(z),

F1(z) = −2H0(−z). (4)

It can be seen that analysis filters have the power complementary
property given by

|H0(e
jw)|2 + |H1(e

jw)|2 = 1. (5)

3. RELATIONSHIP BETWEEN CORDIC AND QMF
LATTICE

In this section, we show the relationship between CORDIC and
orthogonal QMF lattice with SPT coefficients. The CORDIC can
compute vector rotation using a series of specific incremental rota-
tion angles, where each rotation is performed by a shift/add oper-
ation [6]. The iterative equation of CORDIC relates the the input
vector v(i) to the output v(i + 1) as

v(i + 1) =

[
1 σi2

−i

−σi2
−i 1

]
· v(i),

φ(i + 1) = φ(i) − σiai for i = 0, 1, ..., S − 1 (6)

where S is the number of CORDIC subrotations, and σi is a se-
quence of ±1s that determines the direction of remaining angle.

Fig. 2. An example of the relationship between one stage (θ =
π/16) of the QMF lattice structure and modified CORDIC algo-
rithm.

φ(i) is the remaining angle after the (i − 1)-th iteration, and de-
termines the sign of σi. The ai is defined as

ai � tan−1(2−i). (7)

The subrotation of CORDIC is similar to the one stage of QMF lat-
tice. More specifically, if the subrotation matrix of (6) is replaced
by the one stage of QMF lattice, it is equivalent to quantizing αn

into SPT with M = 1. For further consideration of relationship
between CORDIC and QMF lattice, let us summarize the modified
CORDIC algorithms [7]. We are specially interested in Modified
Vector Rotational CORDIC (MVR-CORDIC), and Extended Ele-
mentary Angle Set CORDIC (EEAS-CORDIC), and generalized
EEAS-CORDIC among various CORDIC algorithms. The main
difference between the modified algorithm and the conventional
scheme is that the elementary rotation angle set is expanded in a
more flexible way, while a basic shift/add operation is maintained.
More precisely, the number of iterations S is fixed to a predeter-
mined value (usually 2 or 3) that is less than wordlength B, and
the elementary angle ai is modified as follows:

ai � tan−1

( M∑
k=1

sk,i2
−pk,i

)
for i = 0, 1, ..., S − 1,

sk,i ∈ {−1, 0, 1}, pk,i ∈ {0, 1, · · ·, B}. (8)

Then, modified CORDIC algorithms can be distinguished by pa-
rameter M as follows:

if M = 1, MVR-CORDIC,

else if M = 2, EEAS-CORDIC,

else if M ≥ 3, Generalized EEAS-CORDIC. (9)

In the modified CORDIC, each elementary rotation angle can be
performed repeatedly.

The definition of elementary angle of the modified CORDIC
is related with the SPT definition of (1). That is, if M = S =
1, subrotation Rn of QMF lattice is replaced by MVR-CORDIC
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which is equivalent to quantizing αn into SPT where M = 1. Else
if M = 2 and S = 1, it can be replaced by EEAS-CORDIC which
is equivalent to quantizing αn into SPT where M = 2. As with
the EEAS-CORDIC, generalized EEAS-CORDIC where M ≥ 3
can be similarly compared with the SPTs. For example, when the
subrotation angle is π/16, the elementary angle can be represented
as

ai =
π

16
�

⎧⎪⎨
⎪⎩

tan−1(2−2) for MVR,

tan−1(2−2 − 2−4) for EEAS,

tan−1(2−2 − 2−4 + 2−7) for Gen. EEAS.

(10)

Fig. 2 shows an example of the relationship between the QMF
lattice structure and the modified CORDIC algorithms.

4. DESIGN OF PROPOSED PR QMF LATTICE

The design problem is to quantize the αn into a sum of SPT, that
is, determine the sk,n and pk,n of (1) that minimize the stopband
attenuation. The proposed method increases the number of ele-
ments in the discrete coefficient space by using a cascade of the
various CORDIC subrotations (or called MAR in [8]) introduced
in Section 3, whereas the conventional method considers only sin-
gle subrotation. In Table 1 (a), the conventional SPT representa-
tion (M = 3) of the lattice coefficient is shown. Many optimiza-
tion methods [4,5] have considered only this type of structure that
quantizes the αn into a sum of SPT directly. In Section 3, it can
be seen that this prototype1 is based on the EEAS-CORDIC where
S = 1 and M = 3. Here, we can consider another prototype
based on MVR-CORDIC as shown in Table 1 (b). While it uses
the same number of SPT or shift/add operations to the case (a), it
indeed performs a completely different angle rotation. Since cas-
caded system of PU building blocks satisfies PU as well, two chan-
nel QMF lattice satisfies desirable PR condition [1]. As shown in
Table 1 (c), the combination of MVR and EEAS-CORDIC is able
to perform completely different rotation. For the case of M = 3,
the first method provides about six times as dense distribution as
the conventional SPT without the expense of additional hardwares.
The second method is to insert the angles such as π/2 + θ and
π/2 − θ into the coefficient candidate pool assuming that the θ
is an element in the candidate set. Thus, following relationships
hold:[

cos(π
2

+ θn) sin(π
2

+ θn)
− sin(π

2
+ θn) cos(π

2
+ θn)

]
= − cos θn

[
αn −1
1 αn

]
,[

cos(π
2
− θn) sin(π

2
− θn)

− sin(π
2
− θn) cos(π

2
− θn)

]
= cos θn

[
αn 1
−1 αn

]
. (11)

This can additionally provide about 1.5 times the size of reach-
able angle. By using these two ideas at the same time, we can
provide about nine times dense distribution compared to the con-
ventional SPT. Table 1 (d) shows the structure that π/2 is added
to the first section (MVR part) of (c). Although it is added to the
second section (EEAS part), it performs an equivalent rotation. If
M > 3, since more diverse kinds of combinations are possible,
the number of elements would increase dramatically. In the case
of conventional SPT QMF lattice, we search for a similar value to
the ideal αn in the coefficient candidate pool. In other words, it

1In this paper, let the word ‘prototype’ mean the typical SPT lattice
structures as shown in Table 1.

Table 1. Prototypes of one stage of QMF lattice in SPT domain
for the case of M = 3.

Fig. 3. Angle quantization example.

is possible to quantize αn directly into SPT representation. How-
ever, in our design, it would be impossible to directly search for
the value of [αn]Q

2 because the [αn]Q corresponding to the cases
such as MVR or mixed (MVR+EEAS) CORDIC shown in Table
1 (b), (c), or (d) cannot be seen easily. Wu et al. [7, 8] proposed
an angle quantization approach that performs the quantization pro-
cess on the angle domain. A simple angle quantization example is
demonstrated in Fig. 3. In this figure, the coefficient candidates
are stored in the type of the angle, and αn which we aim to quan-
tize is also mapped into the angle domain using tangent function
in order to proceed all search process in the angle domain. The
‘type’ can be used to distinguish various prototypes which can be
represented as a sum of SPT. The system designer is able to use
his/her own type to distinguish the various prototypes. If the SPT
coefficient candidates in the angle domain are constructed, we can
perform the optimization process.

5. DESIGN EXAMPLE

32F filter bank denoted in [1] is examined to show the improve-
ment of the proposed design. The quantized coefficient’s wordlength

2[ · ]Q represents quantization operator.
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Fig. 4. Frequency response and SPT coefficients for the 32F filter
bank in [1].

is 11 bits (B = 8) and M = 3. The local optimization process
of [3, 5] is employed to minimize the maximum ripple of stop-
band. Since the normalized frequency response of the original im-
pulse response h(n) will be changed by a constant multiplication,
we can obviate the scaling process. The frequency responses of
low pass filters for the infinite precision coefficient design, con-
ventional direct quantization, and proposed design are illustrated
in Fig. 4. The ideal coefficient design results in maximum stop-
band attenuation of 48.4 dB. The stopband attenuation of proposed
design is 50.2 dB which is 8.3 dB higher than the conventional de-
sign of 41.9 dB. The maximum ripple of proposed design is less
than that of the ideal design since they minimize different objec-
tive functions. The SPT coefficient values are listed in Fig. 4.
In this figure, ‘Type’ column assigns a proper prototype to each
SPT coefficient. The complexity of proposed filter bank is al-
most the same as the conventional one in that the stages of two
filter banks can be implemented by 6 shifter and 6 adder. Table 2
shows the performance comparison between conventional SPT de-
sign and proposed design of various low pass filters denoted in [1].
It can be observed that the proposed design reduces the stopband
ripple more than 3 dB in most cases.

6. CONCLUSIONS

A structure for the PR lattice filter bank with SPT coefficients has
been proposed based on the various CORDIC algorithms. The pro-

Table 2. Performance comparison between the ideal coefficient
design, conventional SPT design, and proposed design (dB).

Filter # [1] Ideal Conv. Prop. M

8A 40.97 34.18 40.24 2

16B 51.42 47.79 50.82 3

24F 38.37 34.15 39.37 2

32C 57.26 46.36 53.68 3

32E 25.04 28.76 28.90 2

48E 31.61 31.24 33.41 2

64E 39.39 37.28 41.03 3

posed structure is based on two main ideas: the first is to use the
cascade of CORDIC algorithms and the second is to add ±π/2 to
the rotation angle. The proposed method can provide more possi-
ble elements in the discrete coefficient space than the conventional
SPT, and thus largely reduces the maximum ripple of the stopband.
This method can also be used to the similar applications such as
design and implementation of linear phase QMF lattice or orthog-
onal wavelets.
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