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ABSTRACT

The paper addresses the problem of reconstructing a signal
at some high sampling rate from a set of signals sampled at a
lower rate and subject to additive noise and distortion. A set
of periodically time-varying filters are employed in recon-
structing the underlying signal. Results are presented for a
one-dimensional case involving simulated data, as well as
for a two-dimensional case involving real image data where
the image is processed by rows. In both cases, considerable
improvement is evident after the processing.

1. INTRODUCTION

In many problems of concern to modern signal processing,
signals of interest suffer from degradation due to sensor lim-
itation, additive noise, insufficient sampling rate, and vari-
ous other distortions. High resolution (HR) signal process-
ing, or “super-resolution (SR)” processing as it is frequently
called, seeks to produce a more useful signal from a set of
observations by exploiting aliasing, subpixel displacement
and noise removal in order to produce a higher resolution
image.

Work in this area has been spurred on by physical and
production limitations on high-precision optical and other
imaging systems, as well as, the increased marginal costs
associated with achieving greater resolution. In this light,
signal processing solutions have become increasingly at-
tractive.

Our approach to this problem is from a stochastic mul-
tirate signal processing point of view. Related work in-
cludes [1] where an optimal least mean-square estimator is
proposed for estimating samples of a random signal based
on observations made by several observers and at different
sampling rates, and [2] where the problem of fusing two
low-rate sensors in the reconstruction of one high resolution
signal is considered when time delay of arrival is present. A
generalized cross-correlation technique is employed.

In other related work [3, 4, 5, 6] we have investigated

optimal linear filtering in estimating an underlying signal
from observation sequences at different sampling rates. The
focus of these efforts has been on information fusion, i.e.,
on the combination of observations from multiple sensors to
perform tracking, surveillance, classification or some other
task. In particular, [3] and [4] considered a simplified prob-
lem where an underlying signal was estimated from two se-
quences, one observed at full rate and the other at half the
rate. In [5] least squares formulations were examined where
the second sequence had an arbitrary sampling rate. Finally
[6] developed a general approach for any number of obser-
vation signals at arbitrary sampling rates. In this paper, we
apply these methods to the problem of HR signal and im-
age reconstruction. We provide a summary of this method
followed by some applications to signal and image process-
ing.

2. PROPOSED METHOD

We consider the problem of estimating a discrete random
process d[n], which cannot be observed directly, from a set
of M related observation sequences {x0[m0], x1[m1], . . . ,
xM−1[mM−1]} related to d[n] through various forms of dis-
tortion and interference. These sequences may be sampled
at rates lower than that of d[n], and observations sequences
at the same rate may also be shifted in time by fractional
delays with respect to one another (see e.g. x0, and x1 in
Fig. 1).

If the desired signal d[n] and its observations xi[mi] are
jointly wide-sense stationary, then the linear filters required
for optimal mean-square estimation are periodically time-
varying [4]. In this case we can write the estimate as

d̂k[n] =
M−1∑
i=0

x̃T
i h(k)

i (1)

where h(k)
i is a set of time-varying filter coefficients of

length Pi and x̃T
i is a vector of samples from the ith ob-

servation sequence. The periodic time variation is denoted
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Fig. 1. Observation sequences x0 and x1 subsampled (L =
3) and shifted by a fractional delay (k = 0, k = 1, respec-
tively).

by the index k where 0 ≤ k ≤ L − 1, L is the system
periodicity and k ≡ n mod L (see Fig. 2).
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Fig. 2. Reconstruction of the original signal from an ensem-
ble of subsampled signals based on optimal linear filtering

In this paper we consider that the observations signals
are maximally decimated versions of d[n] which have been
subjected to distortion and additive noise as shown in Fig.
3. In this case the observation vector can be written as

x̃(k)
i = D(k−i)

L s̃i[n] (2)

and

s̃i[n] = [si[n], si[n − 1], . . . , si[n − PiL + 1]]T . (3)
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Fig. 3. Observation model for the ith observation sequence.

The matrix D(k)
L is called a “decimation matrix with time

delay” and is used to extract the appropriate samples from
si[n] to form each observation vector. The matrix is defined
in terms of a Kronecker product of the form

D(k)
L = I ⊗ ιk 0 ≤ k ≤ L − 1 (4)

where I is the Pi×Pi identity matrix and ιk is an L×1 index
vector with a 1 in the k + 1th position and 0’s elsewhere.

Minimizing the mean-square error [6], leads to a set of
Wiener-Hopf equations of the form

⎡
⎢⎢⎢⎢⎣

R̃(k)
00 R̃(k)

01 . . . R̃(k)
0L−1

R̃(k)∗T
01 R̃(k)

11 . . . R̃(k)
1L−1

...
...

...
...

R̃(k)∗T
0L−1 R̃(k)∗T

1L−1 . . . R̃(k)
L−1L−1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

h(k)∗
0

h(k)∗
1
...

h(k)∗
L−1

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

r̃(k)∗
d0

r̃(k)∗
d1
...

r̃(k)∗
dL−1

⎤
⎥⎥⎥⎥⎦

0 ≤ k ≤ L − 1 (5)

where the time average mean-square error is given by

σ2
ε = Rd[0]− 1

L

L−1∑
k=0

L−1∑
j=0

r̃(k)T
dj h(k)

j k = 0, 1, . . ., L − 1.

(6)
The correlation terms are defined as

r̃(k)
di = D(k−i)

L r̃di (7)

R̃(k)
ij = D(k−i)

L R̃ijD
(k−j)
L

∗T
(8)

and
Rd[0] = E{d[n]d∗[n]} (9)

where
r̃di = E{d[n]̃s∗i [n]} (10)

and
R̃ij = E{s̃i[n]̃s∗T

j [n]}. (11)

Solving the multirate Weiner-Hopf equations (5) yields a set
of filter coefficients which can be used in the estimation of
d[n] as depicted in Figs. 2 and 4.

3. APPLICATION RESULTS

To evaluate the performance of the proposed method two
examples are presented. In the first example, a triangular
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Fig. 4. Reconstruction of the original signal from an en-
semble of subsampled signals based on FIR Weiner filter-
ing, decimation factor L = 3, filter order P = 4. The figure
illustrates the support of the time-varying filters h(k)

i at a
particular time, n = 15 and k = 0 (red diamond).

waveform is considered for reconstruction. Our method was
compared to the method described in [7] which can pro-
duce an exact reconstruction of the triangular waveform if
the highest frequency terms are left out. Both methods pro-
duce accurate results when there is no noise added to the
observation sequences. When a small amount of noise is
added to the observation sequences the exact reconstruc-
tion method fails to reliably reproduce the signal, while the
method described here continues to produce a reasonably
good approximation to the signal even under severely noisy
conditions (see Fig. 5).

Three observation sequences are given as depicted in
(a) after being subjected to additive white gaussian noise.
The sequences are subsampled by a factor of L = 3. Note
that the underlying form of the original sequence is unde-
tectable. After processing, the HR triangular waveform (un-
observed) is reconstructed from these LR observation se-
quences and is depicted in (b). It is compared to the original
sequence and its mean-square error is displayed. Note the
close correspondence between the estimate and original in
a relatively low SNR environment.

As a second example we apply this method to the prob-
lem of SR image reconstruction. We consider each row of
the observed LR images as an observation signal vector be-
longing to the set {x0[m],x1[m], . . . ,xM−1[m]} (Fig. 6).
Reconstruction is then accomplished line-by-line until ev-
ery row of each image is processed. In this case, the original
image is depicted in (a) and one of its three subsampled ob-
servation images with additive white gaussian noise is given
in (b). The image depicted in (c) represents the result of ap-
plying standard nearest-neighbor interpolation to one of the
three noisy subsampled images and image (d) is the recon-
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(a) Downsampled, noisy observations, L = 3
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(b) Image reconstruction with mean-square error

Fig. 5. Simulation results using optimal linear filtering
method for reconstruction, SNR = −4.8dB , P = 8, L = 3.

structed image. Although the image is processed in only
one direction, there is significant improvement over the in-
terpolated image. In particular, note that edges of structures
can be observed in many cases where the interpolated image
does not provide such detail.

4. CONCLUSIONS

In this paper an optimal linear filtering approach is intro-
duced for the HR reconstruction of an unobserved random
process from a set of related subsampled processes. This
method involves optimal periodically time-varying filters
that are applied to the data. The success of this method was
demonstrated in the reconstruction of a known signal (tri-
angular waveform) from noisy, low-rate observations and in
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Fig. 6. Line-by-line processing of observation images.

reconstruction of a HR image from noisy LR versions by
processing in a row-wise manner. The success in recon-
structing the original image motivates future work which
will consist of further extending these methods to two- and
three-dimensional data.
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