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ABSTRACT 

The contourlet transform, one of the recent geometrical 

image transforms, lacks the feature of translation invariance 

due to subsampling in its filter bank (FB) structure. In this 

paper we develop a translation-invariant (TI) scheme of a 

general multi-channel multidimensional FB and apply our 

findings to the contourlet transform to obtain a TI contourlet 

transform (TICT). Further, we employ the proposed TICT for 

image denoising, where we show that a significant 

improvement in the PSNR values as well as visual results is 

gained. Moreover, we demonstrate that this proposed 

denoising scheme outperforms the TI wavelet denoising 

approach for most experiments. We also introduce a less-

redundant variety of the TICT, where we merely make the 

first stage of contourlets, translation invariant. We show that 

this transform, which we call semi-TICT (STICT), achieves a 

performance near that of the TICT in image denoising. 

1. INTRODUCTION 

An important aspect of an efficient image transform is 

directionality. Having this feature, a transform would have 

the potential to handle 2-D singularities. Many directional 

image transforms have been introduced in recent years. Do 

and Vetterli introduced the contourlet transform, which is 

constructed using two filter bank (FB) stages [3]. The first 

stage is a Laplacian pyramid (LP) that decomposes an image 

into a number of radial subbands, and the second stage is the 

directional filter banks (DFB), where each LP detail subband 

is fed to this stage to be decomposed into a number of 

directional subbands. Both the LP and DFB stages involve 

downsampling in their analysis sections and therefore, they 

are shift variant.  

Translation invariance is a required feature in several 

pattern recognition applications. In addition, it is shown that 

using a TI version of a non-TI multiresolution framework in 

denoising, one can significantly improve the performance [1]. 

This improvement is indeed yielded from reducing Gibbs-like 

artifacts in the denoising results. For the wavelet transform, 

one can use the fast “algorithme a trous” to construct TI 

wavelets [6][7]. This algorithm is originally developed for a 

two-channel octave-band 1-D FB, which is applicable to a 1-

D wavelet transform. For images, this 1-D algorithm is easily 

extendable to 2-D wavelets using separable filters. In this 

work, we extend the algorithme a trous for a general case of 

multi-channel multidimensional FBs to obtain TI schemes of 

such FBs. Then we apply the developed procedure to both 

stages of contourlets to realize the TICT. Since the TICT is 

highly redundant, we also propose the semi-TICT (STICT), 

where we only use a TI Laplacian pyramid (TILP) in 

conjunction with the (critically-sampled) DFB. We show that 

the STICT results in a performance for image denoising 

slightly lower than that of the TICT. Furthermore, we 

demonstrate that the TICT attains better PSNR values in most 

denoising experiments when compared with the TI wavelet 

transform (TIWT) scheme. And visually, TICT is capable of 

better retaining edges and textures in the denoised images. 

2. DEVELOPING A TI SCHEME FOR A 

SUBSAMPLED FILTER BANK 

In this section we develop a TI variant of a general multi-

channel and multidimensional FB. Translation invariance is 

achieved through several ways. Consider a 1-D wavelet 

transform scheme with periodic extension, and a signal of 

size N. At the first level, one filters the signal using the 

wavelet lowpass and highpass filters, and then downsamples 

the resulting approximation and detail coefficients, that is, 

discards the odd-indexed coefficients. Now, if one cyclic-

shifts the signal by an even number 2 , ( )k k ∈Z , the output 

will be the shifted version of the signal by k, that is, the 

single-level wavelet transform is TI for even shifts. Hence, to 

make this wavelet transform TI, we also need the odd-

indexed values of the filtered coefficients. To obtain these 

coefficients, one can cyclic-shift the signal by one (or an odd 

number) and decompose it; or, use the same signal while in 

downsampling shreds the even-indexed coefficients. Hence, 

we obtain two sets of transform coefficients for each channel 

(each has a size of N/2) at the first level.  

At the next wavelet levels, we encounter the same 

situation in which one shreds the odd-indexed coefficients 

during downsampling. Thus, we can avoid downsampling by 

applying the downsampling operation twice to each level: 

once we discard the odd-indexed coefficients and once the 

even-indexed coefficients. Therefore, the size of wavelet 

detail coefficients at each level and also approximation 

coefficients remain equal to the same size of the input signal. 

We can decompose the signal up to 2log N  levels, where we 

obtain the total 2logN N  wavelet coefficients and an 

approximation signal that is constant [6, p. 156]. This way 

we achieve translation invariance by keeping all transform 
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coefficients. Below we examine the problem for a general 

FB. 

Consider a perfect reconstruction d-dimensional N-

channel FB [8] as illustrated in Fig. 1. We denote M for a 

d d×  sampling matrix. Note that if MN d= , where 

det( )Md M= , the FB is critically-sampled and if MN d> , it 

is oversampled. Suppose we denote the outputs of the 

analysis filters before downsampling as [ ], for 0iw n i N≤ < , 

where 1( , ..., )T d
dn n n= ∈Z . Hence, we have [ ] [ ]i iy n w Mn= . 

Proposition 1:   If one computes all possible shifts of 

[ ]iw n  by ( ) (0 1),c Mk M c d∈ ≤ ≤ −N  where det( )Md M= , 

and ( )MN  is the set of integer vectors of the form 

, [0,1)dMt t ∈ , then the output of the analysis section is 

translation invariant. 

Proof:   Let us denote the output of channel i for each 

shift ck  as ( )ics n  ( 0 i N≤ < , and 0 1Mc d≤ ≤ − ),  

and the set of outputs of channel i as: 

0 ( 1)[ ] { [ ], ..., [ ]}
Mi i i ds n s n s n−= . That is for each channel i, we 

have Md  outputs obtained by shifting iw  as  

[ ] [ ] (0 1, 0 )ic i c Ms n w Mn k c d i N= + ≤ ≤ − ≤ < . 

Consequently, ics  equals the thc  polyphase component of 

iw . Therefore, the output of channel i is a “scrambled” 

version of [ ]iw n . That means, if one shifts the input as 

[ ] [ ], ( )dx n x n p p′ = + ∈Z , one obtains the same shift 

for [ ]iw n , however, [ ]is n′  equals the set of 

polyphase components of [ ]iw n′ . Thus, 

[ ] { [ ]; 0 d 1}i i c Ms n w Mn p k c′ = + + ≤ ≤ − , which is not simply 

[ ]is n p+ .                         
�

It is clear that for a multilevel FB, we can apply the 

above method at each level for as many inputs as that level 

has. The above proposed procedure for obtaining a TI 

scheme is not fast and also it does not directly produce 

stationary outputs; that is, the outputs need to be 

unscrambled. Of course this procedure is appropriate in some 

applications such as adaptive coding, where one needs to find 

a “best” shift based on a cost function. To avoid the 

mentioned concerns, below we develop an alternative

procedure to obtain the TI scheme. 

Proposition 2 [5]:   In a single-level multidimensional 

perfect reconstruction FB (see Fig. 1), if we omit the 

sampling operations, the new TI output, tx , will be a scaled 

version of rx , i.e. t rx ax= , where 1/ Ma d= . The 

redundancy of the resulting TI FB is equal to N. 

According to Proposition 2, one can simply omit the 

subsampling operations at a single-level FB scheme to obtain 

a TI realization of the FB. For a multilevel FB, however, we 

cannot merely omit the subsmapling operations at every level 

to construct the corresponding TI scheme. Note that at the 

original FB with subsampling, the input for a level 1j +  is 

the downsampled version of the output of level j. Therefore, 

in the nonsubsampled version of the FB, one should change 

the analysis filters of the level 1j +  in such a way that they 

operate in the same way as when we have subsampling. The 

next proposition states how one can construct new filters 

when one omits the subsampling operations in a multilevel 

FB, in order to achieve translation invariance. 

Proposition 3 (generalized algorithme a trous):  

Assume that we have an L-level multi-channel FB with 

analysis and synthesis filters ( ) ( )l
iH z  and 

( ) ( ) (0 , 1 )l
iG z i N l L≤ < ≤ ≤ , respectively and sampling 

matrix M. If one omits the subsampling operations in the FB

to obtain the TI scheme, the new analysis and synthesis filters 

at a level , (1 )l l L≤ ≤  are 
1( ) ( ) ( )

l
l M

i iH z H z
−

=  and 
1( ) ( ) ( )

l
l M

i iG z G z
−

= , respectively. 

Proof:   Let us prove this proposition through induction. 

For the first level ( 1l = ), the proof was given in Proposition 

2, that is, the filters remain unchanged. Now suppose  

we have the TI filters of 
1( ) ( ) ( )

l
l M

i iH z H z
−

=  and 
1( ) ( ) ( )

l
l M

i iG z G z
−

=  for level l. Assume that the output of the 

analysis part at this level is ( ) ( ) (0 )l
iY z i N≤ < . Now at the 

next level, 1l + , we apply a FB using the previous level 

filters, which are ( ) ( )l
iH z  and ( ) ( )l

iG z . Since in the original 

FB, each analysis (synthesis) filter presumes a downsampled 

(upsampled) version of the output of the last level, as 

depicted in Fig. 2, the equivalent filters are obtained using 

the noble identities:  
( 1) ( )( ) ( )l l M
i iH z H z+ =   and  ( 1) ( )( ) ( )l l M

i iG z G z+ = . 

Hence, 
1( 1) ( )( ) ( ) ( )

l l
l M M M

i i iH z H z H z
−+ = = , and 

1( 1) ( )( ) ( ) ( )
l l

l M M M
i i iG z G z G z

−+ = = .        
�

The following corollary generalizes Proposition 3 when 

the sampling matrices could vary over the different levels. 

Corollary 1:   Suppose that (1 )lM l L≤ ≤  is the 

sampling matrix for level l in the filter bank mentioned in 

Proposition 3. Then the equivalent analysis and synthesis 

filters for the nonsubsampled filter bank for levels 2l ≥
(they remain unchanged for the first level) are 

1

1( ) ( ) ( )
l

jj
M

l
i iH z H z

−
=∏= , and 

1

1( ) ( ) ( )
l

jj
M

l
i iG z G z

−
=∏= . 

Proposition 3 (and its corollary) is indeed an extension 

of the well-known algorithme a trous [7]. This algorithm was 

introduced for the wavelet transform where one constructs 

undecimated or nonsubsampled wavelets. Employing this 

procedure, one can construct the TI scheme of a filter bank 

system in a rather straightforward manner. 

M

x 

M

1
( )H z MM

MM1
( )

N
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1
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Fig. 1. A single-level multi-channel filter bank. 
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Fig. 2. The effects of subsampling on the filters of a filter 

bank should be considered when developing a TI scheme. 
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3. TI CONTOURLET TRANSFORM (TICT) 

Since the contourlet transform is realized using two stages of 

subsampled filter banks, to create a TI contourlet transform 

(TICT), we should develop the TI schemes for both stages: 

the LP and DFB, as we explain below. 

3.1. TI Laplacian Pyramids (TILP) 

Do and Vetterli proposed a new reconstruction scheme for 

the LP based on the frame reconstruction [2]. They also 

expressed the LP in the polyphase domain [8] in the form of 

an oversampled FB that is a suitable form for realizing the 

TILP. Fig. 3 shows the resulting 2-D FB assuming that the 

lowpass and highpass filters in the LP are H and G [2][5]. 

Here diag(2,2)=M  is the sampling matrix, 

( )
( )

0 3
0 3

0 3

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ,

T
k k

T

z H z z G z H z z G z H z

H z K z K z

= − −
=

M M
�

�

T

and 

( )
( )

0 3
0 3

0 3

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) .

k k
z G z z G z H z z G z H z

G z F z F z

− −= − −
=

M M
�

�

S

( )iH z  and ( )iG z  are the polyphase components of [ ]h n  and 

[ ]g n  in the z-domain, where [ ] [ ]i ih n h n k= −M  and 

[ ] [ ] (0 3)i ig n g n k i= + ≤ ≤M , and  

0 3

0 0 1 1
{ } , , ,

0 1 0 1
i ik ≤ ≤

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪= ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

, 

are cosets of M [8] and ( )T⋅  denotes the transpose of a matrix. 

To construct a multilevel LP, one can simply iterate the 

single-level LP on the lowpass channel. And according to 

Section 2, the multilevel TI scheme of the LP is constructed 

by suppressing all subsampling operations and modifying the 

filters at level l as,  

( )1 1 1( )
0 3( ) ( ) ( ) ( )

l l l T
l z H z K z K z

− − −
= M M M

�T , 

and  

( )1 1 1( )
0 3( ) ( ) ( ) ( )

l l l
l

z G z F z F z
− − −

= M M M
�S , 

where 
1 1 12 2

1 2( , )
l l l

z z z
− − −

=M , which implies that we upsample 

the corresponding filters in both the row and column 

directions with 12l − . Note also that we should scale the 

signal after each synthesis bank by ¼. In the TILP scheme, 

since there are four detail channels at each level, the 

redundancy of this scheme is 4 1L + , when an L-level 

scheme is employed. 

3.2. TI Directional Filter Banks (TIDFB) 

In an l̂ -level DFB, we decompose the frequency space to 
ˆ

2l

wedge-shaped partitions. It can be expressed by an overall 

FB having 
ˆ

2l  analysis and 
ˆ

2l  synthesis filters, 
ˆ ˆ( ) ( )andl l

i iH G  (
ˆ

0 2li≤ < ), and the overall sampling matrices 

ˆ( )l
iS , where 

ˆ ˆ1 1
ˆ( )

ˆ ˆ ˆ1 1

diag(2 ,2), if 0 2

diag(2,2 ), if 2 2

l l

l
i

l l l

i
S

i

− −

− −

⎧ ≤ <⎪= ⎨
≤ <⎪⎩

. 

Since this FB scheme is the equivalent iterated DFB 

system for l̂  levels, to construct the TI scheme, it is 

sufficient to suppress the subsampling operations and 

multiply the reconstructed signal by a scaling factor, which is 
ˆ ˆ( )1/ det( ) 2l l

iS −= . Therefore, the redundancy of such scheme 

is equal to the number of directions 
ˆ

2l . 

3.3. TI and Semi-TI Contourlet Transforms 

The TI contourlet transform (TICT) is constructed using the 

TILP and TIDFB. In fact, we employ a similar structure as 

the one we used in the contourlet transform; however, in 

developing the TICT, since every level of the TILP has four 

highpass subbands, we are required to apply the TIDFB to 

each one of these subbands. To preserve the anisotropy 

scaling law of 2width length= , we apply a TIDFB with a 

desired maximum number of directional levels to the four 

finest subbands of the TILP, where we are at level one, then 

as we decrease the radial resolution of the TILP at higher 

levels, we decrease the directional levels at every other TILP 

level. 

Proposition 4:   Assume that a TILP has L levels and we 

apply an ˆ
il -level (1 i L≤ ≤ ) TIDFB to the four detail 

subbands of level i of the TILP. Then the redundancy of the 

constructed TICT is 
ˆ

1
4 2 1i

L l

i
L

=
+∑ .  

Proof:   The proof is straightforward noting that the 

TILP has four detail subbands at each level and the 

redundancy of an ˆ
il -level TIDFB is 

ˆ
2 il .       

�

Since the redundancy of the TIDFB increases 

exponentially as the number of directional levels is raised, we 

construct another variety of contourlets. This construction is 

realized through applying the critically-sampled DFB to the 

TILP in much the same way we constructed the TICT. The 

only difference is that we do not use the TI version of the 

DFB and thus, this realization is indeed non-TI; so, we call it 

semi-TI contourlet transform (STICT). The redundancy of 

this scheme is the same as the redundancy of the TILP, that is 

4 1L + . 

r
x

M

x 

M

0
( )K z MM

MM3
( )K z

( )H z

3
( )F z

1
( )F z

( )G z

( )zT ( )zS

0 ( )Y z

1( )Y z

3 ( )Y z

Fig. 3. One-level 2-D LP in the form of an oversampled FB. 
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4. IMAGE DENOISING 

The contourlet transform has been shown to be a better 

alternative choice than wavelets for image denoising [3]-[5]. 

In [4], a cycle-spinning algorithm is employed to improve the 

denoising performance of contourlets. Although it is 

equivalent to a TI denoising if all of the possible shifts of the 

input image are used, the computational complexity of this 

procedure is too high, which consequently makes this 

algorithm almost prohibitive for rather large-size images. In 

contrast, the proposed method in this paper achieves TICT 

with a feasible load of computation. 

To evaluate the proposed schemes, we performed several 

experiments on a variety of images all of size 512 512× . We 

used biorthogonal Daubechies 9/7 wavelets for comparison. 

A TI wavelet transform (TIWT) is implemented using the 

approach mentioned in Section 2. Hence, a TIWT with L

levels has a redundancy of 3 1L + . For the LP stage of 

contourlets we also used the same biorthogonal filters and 

applied 6 levels of decomposition. The images are 

contaminated by a zero-mean Gaussian noise with a standard 

deviation of σ , ranging from 20 to 80. Since for TI 

denoising, hard-thresholding usually yields better results than 

soft-thresholding, we used hard-thresholding with a fixed 

threshold value equal to 3τ σ=  [6]. Table I shows the PSNR 

results of the denoising experiments when 20σ = . We see 

that the TICT yields superior results in all cases. In particular, 

for the Barbara image, there is a gain of over 1.8 dB in 

comparison to the PSNR value achieved by the TIWT. 

Furthermore, the PSNR values attained by the suboptimal 

method of STICT are up to 0.6 dB less than those of the 

TICT. The PSNR vs. standard deviation curves for the 

images Barbara and Peppers are provided in Fig. 4. As seen, 

the TICT approach yields better results at most cases. Fig. 5 

shows the denoised results of the Barbara image at 20σ = . 

It is clear that the TICT denoising scheme is capable of 

further retaining edges and fine details when compared with 

the TIWT scheme. Remarkably, the CT scheme introduces a 

significant amount of artifacts and since TI denoising 

considerably reduces these artifacts, the TICT denoising 

approach yields better results at most cases (Fig. 4). 

5. CONCLUSIONS 

In this work we developed a procedure to obtain a TI version 

of a general multi-channel multidimensional subsampled FB, 

where we proposed a generalized algorithme a trous, and 

then applied the derived approach to the contourlet 

transform. In addition to the proposed TI contourlets, we 

introduced semi-TI contourlets, which is less redundant than 

the TICT. Furthermore, we employed our proposed schemes 

in conjunction with the TIWT to image denoising. Our 

simulation results indicate the potential of the TICT and 

STICT for image denoising, where one can achieve better 

visual and PSNR performance at most cases when compared 

with the TIWT. 
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TABLE I 

PSNR VALUES OF THE DENOISING EXPERIMENTS WHEN 20σ =
Image WT1 CT2 TIWT3 STICT4 TICT5

Barbara 25.70 26.31 28.19 29.42 30.06 

Boats 27.14 26.83 29.68 29.57 30.05 

Fingerprint 26.21 26.05 28.66 28.45 28.74 

GoldHill 26.87 26.66 29.08 28.95 29.36 

Mandrill 22.98 22.66 25.12 24.87 25.36 

Peppers  28.41 27.69 30.90 30.54 31.06 

        1Wavlet Transform 4Semi-TI Contourlet Transform 

        2Contourlet Transform 5TI Contourlet Transform   
        3TI Wavelet Transform 

Fig. 4. PSNR results of the image denoising experiments for 

the Barbara and Peppers images. 
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Fig. 5. Denoising results of the Barbara image at 20σ =  using 

different schemes (from left to right, top to bottom): TIWT, 

CT, STICT, TICT. 
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