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ABSTRACT

Though several wavelet-based compression solutions for wireless
sensor network measurements have been proposed, no such tech-
nique has yet appreciated the need to couple a wavelet transform
tolerant of irregularly sampled data with the data transport proto-
col governing communications in the network. As power is at a
premium in sensor nodes, such a technique is necessary to reduce
costly communication overhead. To this end, we present an irreg-
ular wavelet transform capable of adapting to an arbitrary, multi-
scale network routing hierarchy. Inspired by the Haar wavelet in
the regular setting, our wavelet basis forms a tight frame adapted to
the structure of the network. We demonstrate results highlighting
the approximation capabilities of such a transform and the clear
reduction in communication cost when transmitting a compressed
snapshot of the network to an outside user.

1. INTRODUCTION

Wireless sensor networks have arisen in recent years as an ap-
plication area rooted in such disparate fields as micro-electro-
mechanical systems, digital signal processing, and wireless net-
working. With a variety of prototype systems already developed
and in fledgling deployment, sensor networks represent a promis-
ing new tool for scientific study, given their ability to immerse
themselves in an environment and densely sample phenomena of
interest.

As such nodes must operate remotely without operator inter-
vention, they must carefully budget power drains from their on-
board batteries. Consisting of sensors to capture data, micropro-
cessors to process data, and radios to establish network links, sen-
sor nodes allocate by far the majority of their power to wireless
communication. In fact, the disparity between the power expendi-
ture for sensing/processing and communicating is typically orders
of magnitude [1], with the clear implication that processing to re-
duce transmission loads will provide a substantial savings in power
output.

Recently, sensor network literature has begun to investigate
the application of multiscale structures to such tasks as querying
a network for features of interest and compressing a measurement
field to facilitate both in-network storage and out-network trans-
mission of the field. These techniques typically impose a hierar-
chy on the network, whereby nodes are clustered and the clusters
themselves are iteratively clustered until a root in the hierarchy
is reached. To address the problem of routing communications
in a sensor network, both the wavRoute [2] and COMPASS [3]
protocols suggest such hierarchies for data flow. Similarly, mul-
tiscale data representations have been posed to address some of
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the typical data-processing applications in sensor networks. DI-
MENSIONS [4] proposes to use an in-network wavelet transform
to facilitate both network querying and measurement compression
for in-network data storage. The latter goal is also pursued by the
related Wisden [5] system. In a similar spirit, the Fractional Cas-
cading method of [6] employs a multiscale representation of the
network to facilitate efficient processing of queries.

To date, wavelet data representations in sensor networks have
assumed that sensors lie along a regular grid in the network and/or
that the cost of computing each scale of the transform is negligi-
ble. Though such assumptions allow for direct application of tra-
ditional wavelet theory in two dimensions, they are not reasonable
for realistic deployments, as detailed in [7]. While regular grid
wavelet transforms do give excellent compression results for lo-
cally smooth fields, they are typically implemented as finite-length
filters and by no means incur negligible communication overhead.
Either all the samples must be known at a central location, or
each sensor must collect neighboring measurements within the fil-
ter support prior to computing its wavelet coefficient. Moreover,
regular grid wavelet transforms do not apply to data sampled on
irregular grids.

Clearly, any practical multiscale transform must accommodate
networks with arbitrary, irregular placement of sensors. Such a
transform must also incur minimal communication overhead and
be well matched to the routing protocol employed in the network.
To this end, we propose a new distributed irregular wavelet trans-
form related to the well-known Haar wavelet basis.

Given an arbitrary multiscale routing hierarchy, such as that
determined by COMPASS [3], we develop a transform that re-
stricts inter-sensor communication to within clusters formed by
the hierarchy – areas where local communication is assumed to be
least expensive. In Section 2, we overview prior work on comput-
ing centralized irregular wavelet transforms. Section 3 introduces
the structure of hierarchically routed, irregularly sampled networks
and discusses the constraints imposed by the routing topology. In
Section 4 we develop the transform and provide bounds on its re-
construction error when the transform coefficients are thresholded
and used to reconstruct an approximation of the field. Section 5
provides an example of our transform applied to the problem of
compressing the measurement field and routing a compressed de-
scription outside the network. An analysis of the communication
benefit provided by such a compression follows. Finally, Section
6 concludes with a discussion of our results and directions for the
evolution of our transform.

2. CHALLENGES OF IRREGULAR DATA SAMPLING

Were sensor data sampled using a regular grid, they would be ide-
ally suited to transformations using so called “first-generation”
wavelets [8]. Such grids lend themselves to a regular multiscale
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Fig. 1. Comparing the structure of a quadtree on regular-grid data
(a) to that of an arbitrary hierarchy on irregular-grid data (b).

hierarchy like the quadtree illustrated in Figure 1(a), and coeffi-
cients of the wavelet transform are easily calculated across scales
using integer translates and power-of-two dilations of a single
mother wavelet function. When grid regularity is not the case, first-
generation wavelets will no longer suffice, and we must appeal
to the second generation of wavelet theory and develop irregular
wavelet transforms based on the lifting scheme [8]. For example,
sophisticated irregular wavelet transforms are proposed in both [9]
and [10]. Unfortunately, such techniques are intended to operate
in a centralized fashion on an entire dataset and are not easily dis-
tributable within a sensor network. Additionally, approaches of
this type assume the freedom to impose the most convenient mul-
tiscale hierarchy on the data. In a sensor network with a specific,
efficient hierarchical routing structure already in place, such a lib-
erty can prove far too costly. Thus, any practical irregular wavelet
transform for sensor networks must reconcile itself to the routing-
optimal multiscale structure of the network.

3. MULTISCALE ROUTING HIERARCHIES

Multiscale routing protocols, such as wavRoute [2] and COM-
PASS [3], typically decompose the network of sensors into clus-
ters, electing a cluster head in each. This set of cluster heads is
then itself gathered into clusters with cluster heads, and the pro-
cess repeats, forming a tree, until a single root node is reached.
When nodes conform to a regular grid, such a hierarchy could take
the form of a quadtree (Figure 1(a)), as suggested in [2]. A rout-
ing hierarchy of this form matches exactly that used for a regular
wavelet transform, so that data flow during the transform requires
the kinds of communications for which the routing hierarchy has
been optimized.

Realistically, though, the network will comprise an irregu-
larly sampled dataset, and the routing hierarchy will resemble that
shown in Figure 1(b). Again, cluster formation imposes a specific
communication economics whereby communications within clus-
ters and up or down the hierarchy are considered relatively inex-
pensive, while communication across clusters is taken to be more
costly. To implement an efficient multiscale transform, we require
that data shared between sensors during the analysis phase of the
transform correspond to communications favored by the hierarchy.
Thus, in any given cluster, we must restrict the scope of our trans-
form to the measurements within that cluster. This imposition,
along with the need to accommodate a specific hierarchy, prevents
us from directly applying the irregular wavelet theory discussed in
Section 2. Instead, we look for inspiration to the most rudimentary
wavelet basis from regular wavelet theory: the Haar wavelet.

4. TRANSFORM DETAILS

Conceptually, wavelets reduce a set of data into some sort of av-
erage and differences from that average, with the goal that these
differences should be small and therefore both easier to encode
and potentially more negligible than points in the original data set.
This can be seen most directly by considering the Haar wavelet
basis in the 1-D regular setting, as shown in Figure 2(a). Thinking
in terms of averages and differences provides an intuitive starting
point for developing a transform with the restrictions discussed in
Section 3 – namely, that within a cluster, the transform has access
only to cluster points, whose count is arbitrary and determined by
the routing hierarchy. Although Haar wavelets cannot be applied
directly to irregular samples with non-dyadic hierarchies, they do
provide inspiration for a new irregular wavelet transform for sen-
sor networks.

4.1. Extending Haar Past A Pair of Measurements

Figure 2(a) shows the standard Haar basis functions on a regular
1-D grid. Function s captures the sample average while w encodes
a combination of differences of the two samples from the average.
To adapt this methodology to our sensor network application, we
must make two modifications. First, to account for the irregular-
ity of the sampling, we must assign support sizes to each sample,
essentially assuming that the sampled signal is piecewise constant
over the supports of the samples. This is illustrated at the top of
Figure 2(b). The discrete inner product sums of the regular Haar
analysis become continuous inner product integrals of piecewise
constant measurement and basis functions. In fact, regular Haar
can be expressed the same way, with the uniform support size from
the continuous integral factoring out at the end of the analysis to
effectively give the discrete inner product. To see the need for this
modification, we must realize that no longer are all samples equal
– the average value must not be biased toward samples in regions
of high sampling density.

Thus, we can form a set of piecewise-constant basis functions
in the 1-D example, as given in Figure 2(b). The function s, ev-
erywhere constant, serves as the scaling analysis function. The
remaining functions w1, w2, and w3, each constant save for a
single support area, act as wavelet functions. Magnitudes of the
piecewise-constant regions in each function are given in Section
4.2, where we state the explicit form of analysis and synthesis ma-
trices. Assigning support sizes in these 1-D examples is trivial —
for any given sensor, its support extends halfway to either of its
neighboring sensors. This effectively makes each sensor respon-
sible for the space closer to it than to any other sensor according
to the Euclidian norm. Extending this idea to 2-D, we can assign
to each sensor the polygon surrounding it in a Voronoi tessellation
[11] of the sensor field. Again, the polygon enclosing a sensor
contains all points closer to that sensor than any other. Voronoi ar-
eas can be computed for the sensor network during a startup phase,
and as the polygon for a sensor depends only on locations of sen-
sors whose own polygons abut it, the Voronoi calculation should
be distributable.

Finally, we note that Haar wavelets form a non-redundant,
complete orthonormal basis. As a result, the sum of the squared
wavelet coefficients for any signal expansion equals the energy of
the original signal. Maintaining such a Parseval relation is key
for any useful sensor network wavelet transform, as it guarantees
optimal approximation results via thresholding, to be discussed in
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Fig. 2. Relating the discrete 1-D regular Haar basis {s, w} (a)
to the continuous irregular tight frame basis {s, w1, w2, w3} (b),
which is piecewise constant over the intervals {∆1, ∆2, ∆3}.

Section 4.3. And while our basis does obey Parseval, we introduce
a bit of redundancy, forming a total of N + 1 coefficients for N

measurements in a cluster – that is, we produce 1 average value
and N differences for a set of N sensors. This tiny amount of re-
dundancy, tolerated to yield a clean expansion set, means that we
have an overcomplete basis — in this case, a Parseval tight frame
[12]. We now turn to the details of computing this tight frame
expansion.

4.2. Tight Frame Expansion

For a cluster of N sensors, we wish to take the vector of sensor
measurements m = [m1, m2, ..., mN ]T and transform it into the
coefficient vector c = [s, w1, w2, ..., wN ]T , where s is the scal-
ing coefficient for the cluster and {wj}N

j=1 are the wavelet coeffi-
cients. We begin by defining the (N + 1)-by-N matrix K:

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

k0 k0 k0 · · · k0

k
′

1 k1 k1 · · · k1

k2 k
′

2 k2 · · · k2

k3 k3 k
′

3 · · · k3

...
...

...
. . .

...
kN kN kN · · · k

′

N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The first row of K represents the constant-valued scaling function,
while each (i, j)th element in the remaining rows gives the value
of wavelet function i−1 over the Voronoi cell surrounding sensor j

(see Figure 2(b)). Utilizing the set of N Voronoi tessellation areas
{∆j}N

j=1 assigned to the sensors as described above, the majority
of row coefficients in K are given by

ki =

⎧⎪⎨
⎪⎩

1√
∆tot

, i = 0

√
∆i

∆tot

, i > 0

,

with ∆tot =
∑N

j=1
∆j . Entries on the first sub-diagonal are de-

scribed as

k
′

i = −ki(∆tot − ∆i)

∆i

, i > 0.

The analysis matrix is formed as TA = K∆, where ∆ is an
N -by-N diagonal matrix of the areas {∆j}N

j=1. Thus, wavelet and
scaling coefficients can be calculated as c = TAm. The synthesis
matrix takes the form TS = ∆

−1
TA

T , so that measurements can
be recovered as m = TSc. For a detailed proof showing that this
transform does indeed form a Parseval tight frame, we refer the
reader to [13].

4.3. Approximation via Thresholding

Approximation of wavelet transforms typically amounts to dis-
carding the wavelet coefficients which are the “least important,” a
distinction the tight frame allows us to quantify. When the wavelet-
domain signal formed in Section 4.2 is approximated by zeroing
out a set of M wavelet coefficients {wz,i}M

i=1, the energy differ-
ence ‖S‖2 − ‖Ŝ‖2 between the reconstructed and original signals
is bounded as

‖S‖2 − ‖Ŝ‖2 ≤ 2
M∑

i=1

w
2

z,i ,

where S describes the original field of measurements, and Ŝ gives
the field reconstructed following approximation. This result en-
sures that thresholding may be used as an optimal approximation
technique: given that we are able to keep a only a certain number
of coefficients, those best discarded are the M smallest, since the
bound depends on the magnitude of zeroed coefficients. Again, for
a proof of the energy difference bound, the reader should consult
[13].

4.4. Iteration

To build up the complete multiscale representation, the transform
outlined in Section 4.2 is first applied at each cluster of sen-
sors. Sensors in a cluster transmit their measurements and areas
to a clusterhead, which generates wavelet and scaling coefficients.
Each clusterhead then retains wavelet coefficient values and passes
its scaling coefficient s and aggregate area ∆tot to the clusterhead
for the next higher level in the hierarchy. Coefficients are again
calculated, and the process iterates on the scaling coefficients and
summed areas for the set of higher level clusters, terminating when
the root of the hierarchy is reached, at which point the single re-
maining scaling coefficient is recorded, and the transform is com-
plete.

For the compression application, a user outside the network
broadcasts to the network a threshold below which wavelet coef-
ficients may be discarded. Clusterheads at all levels then compare
their stored wavelet coefficients against the threshold and begin to
send up the hierarchy those values which are significant. Values
are tagged as to their position in the transform, and the user may
reconstruct an approximation of the field, assuming knowledge of
sensor locations, which may be transmitted during network initial-
ization. In the next section, we present an example of such network
compression.

5. EXAMPLE

To evaluate the effectiveness of our proposed transform, we ran-
domly assign coordinates on the (0, 1) × (0, 1) square to 2500
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Fig. 3. Irregular sensor locations (a), samples from a piecewise smooth quadratic signal with additive noise (b), and reconstruction using
largest 15% of the wavelet coefficients (c).

sensors. This field is depicted in Figure 3(a). Sensors are assigned
to a 6-level hierarchy, with 2500, 500, 100, 20, and 4 clusters in
each of the fine-to-coarse levels and 1 root cluster. The hierarchy
is allowed to form randomly, clustering spatially proximate sen-
sors. Sensor locations are then used to samples a smooth, noisy
quadratic with a discontinuity along the line y = 0.6x, yielding
the field of sensor measurements shown in Figure 3(b).

To evaluate approximation accuracy, we set approximately
85% of the wavelet coefficients to zero via thresholding of the
smallest coefficients. The reconstructed field, depicted in Figure
3(c), closely resembles the original and has 99.74% of the original
signal energy. The energy difference between the original and ap-
proximated signals is only 1.08 times that of the discarded wavelet
coefficients – well within the bounds calculated in Section 4.3.

To understand the communication benefits of such a compres-
sion, we compare the cost to route out all the original measure-
ments to that of routing out significant wavelet coefficients. As-
suming an exponential increase in the cost of links as we traverse
up the hierarchy, the cost of transmitting only the non-zero wavelet
coefficients is 14.9% of the cost to transmit all measurements – an
excellent reduction in transmission cost for such a small approxi-
mation error.

6. CONCLUSIONS AND FUTURE WORK

To summarize, we have proposed what is, to our knowledge, the
first irregular wavelet transform well-suited to distributed opera-
tion within a sensor network. Rather than requiring any specific
multiscale hierarchy, our transform adapts to the hierarchy best
suited to data transport within the network, tightly coupling trans-
form with routing and ensuring that transform overhead requires
minimal communication energy. We have presented experimental
results indicating that the approximation power of our transform
is substantial and that communication cost is substantially reduced
by employing such a technique when transmitting a snapshot of
the measured field off-network. We intend to extend the results
seen here to accommodate higher orders of approximation than
piecewise constant.
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