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ABSTRACT

A method to despeckle SAR images based on the maximum a
posteriori (MAP) estimation strategy in the undecimated wavelet
domain is proposed. The method uses the assumption that the
wavelet coefficients probability density functions (PDFs) are gen-
eralized Gaussians. The parameters of such distributions are com-
puted by using the moments and the cumulants of the PDFs of the
processes that constitute the SAR image, i.e., radar reflectivity and
speckle noise. Experimental results demonstrate that the theory of
MAP filtering can be successfully applied to SAR images repre-
sented in the shift-invariant wavelet domain.

1. INTRODUCTION

SAR images are usually modeled as affected by a purely multi-
plicative (or fully developed) speckle noise. This fact introduces
significant difficulties in designing effective despeckling algorithms.
A possible approach to despeckling is represented by linear mini-
mum mean square error (LMMSE) estimation [1]. LMMSE is the
optimum statistical operator when the involved signals are Gaus-
sian, which is not the case for the processes that form a SAR im-
age. Maximum a posteriori (MAP) estimates exploit the knowl-
edge we have about statistical distributions of SAR images. An
example of such technique is given in [2]. A major breakthrough
in the field of despeckling is given by multiresolution process-
ing. LMMSE and MAP approaches to SAR images despeckling
in the undecimated wavelet domain have been proposed in [3] and
in [4][5], respectively. The MAP criterion needs the knowledge of
the probability density functions (PDFs) of the wavelet coefficients
of the SAR image. The wavelet coefficients have been assumed
to follow a Pearson system of distributions and a Normal inverse
Gaussian distribution in [4] and in [5], respectively. Both these
distributions are characterized by four parameters and are able to
describe asymmetries in the histograms of the modeled variables.

In this paper, a new MAP approach to despeckling in the un-
decimated wavelet domain is proposed. We assume that the wavelet
coefficients obey a generalized Gaussian (GG) law. GG PDFs have
been commonly used to globally - i.e., referring to the whole sub-
band - model the histograms of wavelet coefficients. In this pa-
per, we conjecture that the GG assumption for wavelet coefficients
holds also locally, with space-varying parameters. We will show
how to derive such parameters based on: 1) the moments and the
cumulants of the GG distributions of the wavelet coefficients, and
2) the knowledge of the PDF of the speckle-free reflectivity and

of the speckle noise. The main features of the proposed MAP ap-
proach as well as some experimental results will be illustrated in
the following.

2. SIGNAL MODEL OF SAR IMAGES

For the sake of clarity, we will describe the method assuming the
signals as 1-D sequences. The extension to the 2-D case is straight-
forward. In the fully developed speckle model, the multiplicatively
corrupted backscattered signal can be expressed as

g(n) = f(n) · u(n) = f(n) + f(n) · [u(n) − 1]
= f(n) + f(n) · u′(n) = f(n) + v(n),

(1)

in which g(n) and f(n) are the observed noisy signal and the
noise-free reflectivity, respectively, at pixel position n, and u is
the fading variable modeled as a stationary random process inde-
pendent of f , with E [u(n)] = 1. The random process u′(n) �
u(n) − 1 is zero-mean. All the processes are assumed as inten-
sity signals. The term v(n) = f(n) · u′(n) represents an additive,
zero-mean, signal-dependent, nonstationary noise term.

3. THE UNDECIMATED WAVELET TRANSFORM

The wavelet transform provides a multiresolution representation of
continuous and discrete-time signals and images [6]. For discrete-
time signals, the wavelet decomposition is implemented by filter-
ing the input signal with a lowpass filter H0(z) and a highpass
filter H1(z) and downsampling the outputs by a factor 2. Apply-
ing the same decomposition to the lowpass channel output yields
a two-level wavelet transform: such scheme can be iterated in a
dyadic fashion to generate a multilevel decomposition. The syn-
thesis of the signal is obtained with a scheme symmetrical to that
of the analysis stage, i.e., by upsampling the coefficients of the
decomposition and by lowpass and highpass filtering. It can be
shown that if we omit the downsamplers from the analysis stage
and the upsamplers from the synthesis stage, then perfect recon-
struction can still be achieved [4][3]. We will refer to this decom-
position as the undecimated wavelet transform. We will use the
notation A

[j]
f (n) and W

[j]
f (n) to denote the approximation and

the detail (or wavelet) coefficients, respectively, at the jth level of
the decomposition of the signal f , whereas n is the spatial index.
It can be easily shown [4][3] that the undecimated approximation
and wavelet coefficients can be obtained by filtering the original
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signal by means of the following equivalent filters

H
[j]
eq,l(z) =

∏j−1
m=0 H0(z

2m

),

H
[j]
eq,h(z) =

[∏j−2
m=0 H0(z

2m

)
]
· H1(z

2j−1
).

(2)

The aim of this study is decomposing a SAR image with an un-
decimated wavelet transform, estimating the noise-free reflectivity
coefficients by using the MAP criterion, and reconstructing the de-
noised image by synthesizing the despeckled wavelet coefficients.

4. MAP FILTER IN THE WAVELET DOMAIN

Since the wavelet transform is linear, from equation (1) we have

A
[j]
g (n) = A

[j]
f (n) + A

[j]
v (n),

W
[j]
g (n) = W

[j]
f (n) + W

[j]
v (n).

(3)

In the following, we will consider only the wavelet coefficients,
i.e., the second relationship in equation (3). To simplify the nota-
tion and whenever it does not create ambiguity, we will drop the
superscript [j] as well as the spatial index n. The a posteriori
probability density function of the noise-free reflectivity wavelet
coefficients conditional to the observed signal wavelet coefficients
is p(Wf |Wg). Hence, by applying Bayes rule, we have

pWF |WG
(Wf |Wg) =

pWG|WF
(Wg |Wf )pWF

(Wf )

pWG
(Wg)

=
pWV |WF

(Wg−Wf |Wf )pWF
(Wf )

pWG
(g)

.
(4)

The MAP estimate of the process Wf coincides with

Ŵf = argmaxWf
pWF |WG

(Wf |Wg)

= argmaxWf
pWV |WF

(Wg − Wf |Wf )pWF (Wf ).

(5)
By taking the logarithm, we have that Ŵf is the solution of the
equation

d

dWf

{
ln pWV |WF

(Wg − Wf |Wf ) + ln pWF (Wf )
}

= 0. (6)

Finding a solution to equation (6) needs modeling the PDFs of the
wavelet coefficients of the speckle-free reflectivity f and of the
additive signal-dependent noise v.

5. REFLECTIVITY AND SPECKLE PDFS

5.1. Reflectivity and Speckle PDFs in the spatial domain

In this section, we consider the most commonly used PDFs to
model the processes u, f , and g [7]. The variable u accounts for
intensity speckle noise. If L-look processing, i.e., averaging L in-
dependent observations of the same area, is performed, then the
process u is modeled as a Γ(L, L) distribution, given by

pU (u) =
LL

Γ(L)
uL−1e−uL. (7)

As to the PDF of the reflectivity f and of the observed process g,
several distributions have been proposed based on the nature of the
sounded terrain. In heterogeneous areas, the reflectivity of an L-
look SAR image is assumed to follow a Γ(υ, λ) distribution, that
is

ΓX(υ, λ) =
λυ

Γ(υ)
xυ−1e−λx, (8)

where υ and λ are parameters. The former is given by υ = µ2
f/σ2

f =

1/C2
f (Cf = σf/µf ) and measures the degree of homogeneity

within the image (Cf is also referred to as coefficient of varia-
tion), while the latter is given by λ = υ/µf , so that the PDF of f
can be written as

pF (f) =
υυ

µυ
f Γ(υ)

fυ−1e−υf/µf . (9)

In this case, the observed image g is distributed as a K PDF. In ex-
tremely heterogeneous areas and nearby point targets, the speckle
does not obey to a fully developed model. To avoid blurring of
strong textures and preserve point targets as they are acquired no
filtering is performed for these classes of backscatter, so that we
will be mainly interested to the class of Gamma-distributed reflec-
tivity.

5.2. Wavelet coefficients PDFs

Since the birth of the wavelet recursive algorithm by Mallat [6] a
Generalized Gaussian (GG) PDF has been used to model image
wavelet coefficients. The GG PDF depends only on two parame-
ters and is characterized by being symmetric around the origin. Its
expression is given by

pX(x) =

[
ν · η(ν, σ)

2 · Γ(1/ν)

]
e−[η(ν,σ)·|x|]ν , (10)

where σ is the standard deviation of the distribution, ν is the shape
factor, and η(ν, σ) = 1/σ

√
Γ(3/ν)/Γ(1/ν).

In the following, a GG distribution is used to fit the wavelet
coefficients data. An important consideration regards the context,
either global or local, of validity of the model. In several stud-
ies, e.g., [6], an unique, or global, set of parameters is used to
model the coefficients of a whole subband. In some applications,
such as image compression, this is recommended not to increase
too much the amount of side information. In denoising applica-
tions, in which the overhead is not a problem, the local estimation
of the parameters allows the estimator to follow the nonstation-
ary characteristics of the image, at the expense of an increase of
the computational burden to derive pixel-wise parameters. In the
following, we will make the following conjecture: The wavelet
coefficients obey to a GG law whose parameters locally vary.

The next section is dedicated to the estimation of the (spatially
varying) parameters (i.e., the standard deviation σ and the shape
factor ν) of the GG distributions involved in the MAP equation
(6), namely, the PDFs of the wavelet coefficients of the reflectivity
f and of the additive signal-dependent noise term v = f · u′.

6. ESTIMATION OF THE WAVELET COEFFICIENTS
PDF PARAMETERS

6.1. Variance estimation

The variance of Wf and Wv is estimated by using the model of
the signal (1) and some observable variables that can be com-
puted from g. The complete procedure is described in [3]; only
the final results are recalled here. From the signal model we have
v = f · u′, where E[u′] = 0. The undecimated wavelet co-
efficients of a signal are obtained by filtering it with the equiva-
lent filter h

[j]
eq,h(n), which will be denoted as h(n) for the sake of

simplicity. The mean of Wv is given by E [Wv(n)] =
∑

i h(i)
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·E [f(n − i)] E [u′(n − i)] = 0, where we used the fact that u′

is independent of f . Hence, we have E[Wf ] = E[Wg], so that
E[Wf ] can be computed from the observable variable Wg. In the
filter implementation, ensemble averages are substituted by spatial
averages. It can be shown [3] that the variance of Wg is given by

σ2
Wf

(n) = σ2
Wg

(n) − E
[
W 2

v (n)
]
, (11)

where E
[
W 2

v (n)
]

is given by

E
[
W 2

v (n)
]

=
σ2

u′

1 + σ2
u′

∑
i

h(i)2E[g(n − i)2]. (12)

By using (12) into (11), the quantity σ2
Wf

(n) can be estimated

from the space-varying observable variables E[g2(n)] and E[W 2
g (n)],

substituted by spatial averages in filter implementation.

6.2. Shape factor estimation

Several methods have been devised to estimate the shape factor
of a GG distribution, see, e.g., [6], where the observation of the
variable to be fitted is needed. In this paper, we will consider a
method that relies only on the knowledge of the moments of the
GG distribution. Since the second and fourth moment of the GG
PDF are given by

µ
[2]
X = Γ(3/ν)

Γ(1/ν)η2(ν,σ)
, µ

[4]
X = Γ(5/ν)

Γ(1/ν)η4(ν,σ)
, (13)

the following expression can be written

µ
[2]
X√
µ

[4]
X

=
Γ(3/ν)√

Γ(1/ν)Γ(5/ν)
. (14)

If the left hand side of (14) could be somehow estimated, this ex-
pression would yield a nonlinear equation whose solution is the
estimate of ν. The cumulants of the PDF will be used to derive the
second and fourth order moments of the desired processes, i.e., the
undecimated wavelet coefficients of the reflectivity f and of the
additive signal-dependent noise term v.

6.2.1. Cumulants and moments of LTI filtered processes

Consider a random process x(n) and let h(n) represent the im-
pulse response of the equivalent filter used to achieve the wavelet
coefficients in a given subband. Hence, we have

y � Wx(n) =

N−1∑
k=0

h(k)x(n − k) =

N−1∑
k=0

yk, (15)

where yk � h(k)x(n − k). In [4], the moment generating func-
tion and the second moment generating function of a random vari-
able are considered. They are defined by ΦX (s) = EX [esx] and
ΨX(s) = ln(ΦX (s)), respectively [8]. The mth-order cumulants
of the random variable X are defined as

κ
[m]
X =

dm

dsm
ΨX(s)

∣∣∣∣
s=0

. (16)

In [4], by using the hypotheses that: 1) x(n) are independent vari-
ables, and 2) they are equally distributed, an expression between
the cumulants of the variables y and x(n) is obtained. Here, we

will use only the former hypothesis. Under this hypothesis, we can
write

ΦY (s) = EY0 [esy0 ] · EY1 [e
sy1 ] · . . . · EYN−1 [e

syN−1 ]
= ΦY0 (s) · ΦY1(s) · . . . · ΦYN−1(s)

(17)
and then, since yk = h(k)x(n − k), we have that ΦY (s) =
N−1∏
k=0

ΦX(n−k)(h(k)s). Taking the logarithm of both sides of this

expression yields

ΨY (s) =

N−1∑
k=0

ΨX(n−k)(h(k)s) (18)

Differentiating m times and using (16), we have

κ
[m]
Y =

N−1∑
k=0

κ
[m]
X(n−k)h(k)m = κ

[m]
X(n) ∗ h(n)m. (19)

Thanks to the relations that exist between moments and cumulants
[8], the desired moments (the second and the fourth) of the vari-
ables of interest are given by:

µ
[2]
Y = κ

[2]
Y + (κ

[1]
Y )2

µ
[4]
Y = κ

[4]
Y + 4κ

[3]
Y κ

[1]
Y + 3(κ

[2]
Y )2 + 6κ

[2]
Y (κ

[1]
Y )2 + (κ

[1]
Y )4

(20)
The problem of computing the mth-order moment (m = 2 or
m=4) of the wavelet coefficients PDFs is transformed into the fol-
lowing procedure: 1) compute the cumulants, up to the mth-order,
of the process that must be decomposed by the wavelet transform,
2) obtain the cumulants of the wavelet coefficients process by fil-
tering the cumulant sequence using the impulse response h(n)m,
and 3) compute the mth-order moment of the wavelet coefficients
process by using (20). Hence, the problem becomes that of com-
puting the cumulants of the involved PDFs.

6.2.2. Cumulants of the reflectivity f

The reflectivity f is assumed to follow the distribution in (9). Its
cumulants can be analytically derived and are given by [8]

κ
[m]
F =

µm
f

υm−1
(m − 1)! = κ

[m]
F (µf , σ2

f ), (21)

where we recall that υ = µ2
f/σ2

f . As can be seen, the cumulants
depend on the (space-varying) mean and variance of f(n), com-
putable from observable variables as shown in section 6.1.

6.2.3. Cumulants of the additive noise term v = f · u′

For the additive noise term v, a more complex strategy must be
devised. The cumulants of the product of two random variables
can not be easily derived. By assuming that f and u′ are statisti-
cally independent, the expression of the moments of v is instead
immediate and is given by

µ
[m]
V = µ

[m]
F µ

[m]
U′ . (22)

Since the cumulants of a random variable Y can be computed from
its moments (the inverse of what presented in (20)) [8], the prob-
lem becomes that of computing the moments of f and u′. The
moments of the Γ-distributed reflectivity are given by [8]

µ
[m]
F =

Γ(υ + m)

Γ(υ)

(µf

υ

)m

. (23)
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The moments of the process u′ = u − 1 are given by

µ
[m]
U′ = E[(u − 1)m] =

m∑
k=0

(
m
k

)
(−1)kµ

[m−k]
U , (24)

in which the moments of the process u, which is Γ(L, L) dis-
tributed, are given by [8]

µ
[m]
U =

Γ(L + m)

Γ(L)

1

Lm
(25)

The following relationships between cumulants and moments [8],
finally, yield the desired cumulants

κ
[2]
V = µ

[2]
V − (µ

[1]
V )2

κ
[4]
V = µ

[4]
V − 4µ

[3]
V µ

[1]
V − 3(µ

[2]
V )2 + 12µ

[2]
V (µ

[1]
V )2 − 6(µ

[1]
V )4

(26)

7. SOLUTION OF THE MAP EQUATION

By taking the derivative of the GG PDFs given in (10), the MAP
equation in (6) becomes

νWV |WF
· η(νWV |WF

, σWV |WF
)νWV |WF

·|Wg − Wf |(νWV |WF
−1)sgn(Wg − Wf )

= νWF η(νWF , σWF )νWF |Wf |(νWF
−1)sgn(Wf )

(27)

In this equation, the quantities νWV |WF
, η(νWV |WF

, σWV |WF
),

νF , and η(νWF , σWF ) are estimated as described in Section 6,
whereas Wg is the observed wavelet coefficient. Solving the equa-
tion with respect to Wf yields the desired MAP estimation Ŵf .
The solution is obtained numerically.

8. EXPERIMENTAL RESULTS

An example of MAP filtering is shown in Fig. 1. A 4-look SAR
image has been processed by means of the MAP estimator de-
scribed in the previous sections. The 8-taps Daubechies’ orthogo-
nal wavelet decomposition has been used. A comparison with the
result obtained from the wavelet-based LMMSE approach [3] (not
shown here due to the lack of space) has also been performed. The
MAP and LMMSE methods yield comparable results in homo-
geneous areas, whereas the MAP estimator slightly surpasses the
LMMSE one in heterogeneous areas. This justifies the fact that
if there is some knowledge about the distributions of the involved
processes, then MAP filtering works better than the LMMSE one.
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