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ABSTRACT

In this study, we propose a 2-dimensional translation invari-
ant Real-Imaginary Spline Wavelet (RI-Spline wavelet) and
develop a 2-dimensional Complex Discrete Wavelet Trans-
form (2-D CDWT). The main results obtained can be sum-
marized as follows: 1) The problem of 2-D translation vari-
ance which is caused by the DWT using a real mother wavelet
can be solved by using the 2-D RI-Spline wavelet. 2) The
2-D RI-Spline wavelet is applied to image processing, and
encouraging results are obtained.

1. INTRODUCTION

The Discrete Wavelet Transform (DWT) is a frequency-space
analysis method for which a very efficient computation al-
gorithm, the Multi-resolution Analysis (MRA) has been pro-
posed by Mallat[1]. However, the DWT has a translation
variance problem[2]. This problem hinders the DWT from
being used in wider fields. Currently, successful applica-
tions of the DWT are restricted to image compression etc.

In order to overcome this translation variance problem
of the DWT, Kingsbury[3] turned his attention to the single
phase of a real wavelet causing the lack of shift invariance,
and he proposed a pseudo complex wavelet(hereafter, we
will call it a complex wavelet), and achieved parallel com-
putation using an algorithm named the Dual-Tree Algorithm
for this complex wavelet. However, the major drawback
of Kingsbury’s approach is that in the process of creating
a half-sample-delay, level -1 decomposition results can not
be used for complex analysis, although the computational
complexity is only twice that of the conventional DWT. So
it is difficult to use Kingsbury’s method for image process-
ing. On the other hand, Fernandes et al. [4] proposed a new
framework for the implementation of the Complex Discrete
Wavelet Transform (CDWT), in which input data are trans-
formed into a spatial domain in order to obtain a Hilbert
pair of input data, and the computational complexity is big-
ger than that of Kingsbury’s method.
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To overcome the disadvantage of Kingsbury’s method,
we have proposed a new complex wavelet, the RI-Spline
wavelet and a Coherent Dual-Tree algorithm for the RI-
Spline wavelet, in which the half-sample-delay between two
parallel trees has been achieved by using interpolation and
the complex analysis can be carried out coherently in all
analysis levels[5].

In this study, we extend the 1-D RI-Spline wavelet to the
2-D RI-Spline wavelet and develop a 2-D CDWT. The 2-D
RI-Spline wavelet is applied to image processing and exper-
imental results using a model image and a medical image
de-noising show that, using our method better results can
be obtained than that obtained by the traditional 2-D DWT.

2. 2-D RI-SPLINE WAVELET AND THE 2-D CDWT

2.1. 1-D RI-Spline wavelet and CDWT

The RI-Spline wavelet and its scaling functions are defined
as follows[5]:

Y(t) = Pr(t) + ji(t),
wR(t) = (_1)(mE72)/2||¢meHil'wmg (t + me — 1)7
Gr(t) = (=1) etV 2, || b, (¢ + mp — 1),
(D)
Nr(t) = Ny, (t — me/2), @)

Ni(t) = N, (t = (mo —1)/2),
where ¥R (t) and 15 (¢) denote the real and imaginary com-
ponents of the RI-Spline wavelet, N(t) and Ny(t) the real
and imaginary components of the RI-Spline scaling func-
tion, ¢, (t) and ., (t) the m, and m,. Spline wavelets,
and N, (t) and N, (t) the m. and m,, Spline scaling func-
tion, and Eqgs. (1) and (2) contain the phase adjustment. The
normalization of the wavelets is conducted as follows:

< fg,kak} = 0,
197kl = 7 4]l = 1.

After normalizing the decomposition sequences {a, "} and
{by'¢} of the m. Spline wavelet 1y, (t), they are used as
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Fig. 1. The 2-D CDWT implementation and module’s definition.

the decomposition sequences {af*} and {b£} of Yr(t). The
same is true for {al} and {b} of 1;(t).

The 1-D CDWT using the RI-Spline wavelet is created
by the Coherent Dual-Tree Algorithm (CDTA) which con-
sists of two trees; a real tree and an imaginary tree. In
the decomposition trees, the real and imaginary parts of the
complex coefficients d, ;, and d7 , are produced. The de-
composition trees of the CDTA start from C%JC and C(I)’k,
which are calculated by interpolation using the synthetic-
interpolation function and the half-sample-delay between

0 0 ;
Cpy and ¢ . can be achieved.

We here define a synthetic wavelet |d,| as follows:

0] = /(@ 1)2 + (d] )2 )

Based on Eq.(3), the following relation can be easily ob-
tained.

J J J — J 7

ldg VR + A1 k7l = \/(dR,k)Q + (dl,k)z o)
Therefore, the synthetic wavelet \dﬂ can be considered as
the norm of wavelet coefficients d}, , and d7 .. So it can be
used as a translation invariant feature for its insensitivity to
phase.

2.2. Extending the 1-D RI-Spline wavelet and the CDWT
to the 2-D

We summarize how the 1-D wavelet and the DWT is ex-
tended to the 2-D. First, each row of the input image is sub-
jected to level -1 wavelet decomposition. Then each column
of these results is subjected to level -1 wavelet decomposi-
tion. In each decomposition, the data is simply decomposed
into a high-frequency component (H) and a low-frequency
component (L). Therefore, in level -1 decomposition, the
input image is divided into HH, HL, LH, and LL compo-
nents. We denote high-frequency in the row direction and
low-frequency in the column direction as HL and so on.
The same decomposition is continued recursively for the LL
component.

Following this procedure shown above, we extend the
1-D RI-Spline and the CDWT to the 2-D. As shown in
Fig.2(a), each row of the input image first is subjected to 1—
D RI-spline wavelet decomposition; one is a real decompo-
sition that uses the real component of the RI-spline wavelet
and the other is an imaginary decomposition that uses the
imaginary component of the RI-spline wavelet. Then each
column of these results is also subjected to a 1-D RI-spline
wavelet decomposition. In this way, we obtain level -1 de-
composition results. When level -1 decomposition is
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Fig. 2. Example of 2 dimension RI-Spline wavelets.
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Fig. 3. Norm obtained by 2-D CDWT using m=4,3 RI-
Spline wavelet from level -1 to level -4.

(a) 256X256 Peppers Image

finished, we obtain four times as many results as with the
ordinary 2-D DWT decomposition. That is, the 2-D CDWT
has 4 decomposition types; RR, RI, IR, and II as shown in
Fig. 2(a). We denote a real decomposition in the row direc-
tion and an imaginary decomposition in the column direc-
tion as RI and so on. Note that each of these decompositions
has HH, HL,, LH, and LL components in it. Furthermore, for
the LL. component, the same decomposition by which the
LL component has been calculated, is continued recursively
as shown in Fig.2(c).

The 2-dimensional RI-Spline wavelet functions of RR,
RI, IR, and II can be expressed as follows using 1-D wavelet

functions g (t) and vy (¢) [1].

Yre(7,y) = Yr(T)YR(Y)
7vZ)RI (I’, y) = 1/112 (1’)7/11 (y) (6)
Yrr(z,y) = Yr(@)Yr(y)
Yrr(z,y) = Pr(x)r(y)

Figure 2 shows these 2-D wavelet functions, where Fig. 2(a)
shows the wavelet function ¢ g g, (b) wavelet function ¢y g,
(c) wavelet function ¥ gy and (d) wavelet function ¢;;. Com-
paring Fig. 2(a), (b), (c) and (d), it is clear that the wave
shape of ¥ rRr, ¥r1, ¥rr and ¥y are different, so different
information can be extracted by using them.

Moreover, based on Eq. (3) and (6), the norm of the 2-
D RI-Spline wavelet function ¢}, at a point (k,, k) of
level j, l[Whp(@ — kayy — ky)ll,
YRRk, Ky || hereafter, can be expressed as follows:

198k, i, I

= ([ p, |2 meyll2 @)
=1

1% e i, || =

The same is true for the other wavelet functions ¢y, Y75
and ¢7,. Furthermore, the inner product of ¢ ;. oy

wgé]’km,ky, ¢§R7km,ky, and ng,k”ky is zero since

< 1/}3%1 &> 1/}? & >=0. This means that the 2-D wavelet func-
tions shown in Eq. (6) are orthogonal to each other. The 2-D
synthetic wavelet |dJ, i, | of the wavelet coefficients in HH
of RR, RI, IR, and m that were obtained in level j (k., ky)
by the 2-D CDWT using the 2-D RI-Spline can be defined
as follows:

LA ®)

\/(dﬁR,km,ky)Q + (dﬁl,km,ky)z + (d%R,km,kyP + (dil,km,ky)z

As is the same with the 1-D case, the 2-D synthetic wavelet
\dy.,. k, | becomes the norm. So it can be treated as a transla-
tion invariant feature, because it is insensitive to phase. The
same result can be obtained in the case of LH and HL.

Figure 3(b) shows an example of the 2-D synthetic wavelet
of the wavelet coefficient from level -1 to level -4 that was
obtained by a 2-D RI-Spline wavelet applied to the original
image shown as Fig. 3(a). As shown in Fig. 3, it is clear
that the 2-D synthetic wavelet in LH, HH, HL carries the
intrinsic information on each local point.

3. EXPERIMENTAL DEMONSTRATION OF
TRANSLATION INVARIANCE

We perform an experiment to demonstrate the translation
invariance of the 2-D RI-Spline wavelet. Fig.4 (a) shows
the impulse response of the 2-D m=4 Spline wavelet, and
Fig.4 (b) shows the impulse response of the 2-D m=4,3 RI-
Spline wavelet. Here, “impulse response” means the fol-
lowing. The input images have “impulse” when only one
pixel is 1, and all of the other pixels are 0. Then the hor-
izontal position of the impulse shifts one by one. These
“impulse” input images are subjected to a 2-D DWT us-
ing the m=4 Spline wavelet and the 2-D CDWT using the
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Fig. 4. Impulse responses of m=4 Spline wavelet and
m=4,3 RI-Spline wavelet on level-2.

m=4,3 RI-Spline wavelet. After subjecting to the 2-D DWT
using the m=4 Spline wavelet and the 2-D CDWT using
the m=4,3 RI-Spline wavelet, only the coefficients of HH
in level -2 are retained, with the other coefficients rewritten
to be 0. These coefficients are used for reconstruction by
the inverse transform. “Impulse response” means these re-
constructed images are overwritten. If the shapes of these
“impulse responses” are the same independent of the posi-
tion of the impulse, the wavelet transform used to make the
“impulse response” can be considered to be translation in-
variant. Comparing Fig.4 (a) with Fig.4 (b), the “impulse
response” of the 2-D m=4,3 RI-Spline wavelet has uniform
shape while that of the 2-D m=4 Spline wavelet does not.

Fig.5 (a) shows the impulse response energy of the 2-D
m=4 Spline wavelet, and Fig.5 (b) shows the impulse re-
sponse energy of the 2-D m=4,3 RI-Spline wavelet. Here,
“impulse response energy”” means the square-sum of the co-
efficients of HH in level -2 obtained from the impulse input.
Comparing Fig.5 (a) and (b), it is clear that the impulse re-
sponse energy of the 2-D RI-Spline wavelet is stable, which
means the transform used to make the impulse response en-
ergy is translation invariant.

4. APPLICATION FOR IMAGE DE-NOISING

In the 1-D case, the Wavelet Shrinkage has been extended
using a translation invariant RI-Soline wavelet in [6]. In

X
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Fig. 5. Impulse responses energy of m=4 Spline wavelet
and m=4,3 RI-Spline wavelet on level-2.

this study, the 2-D extension is developed. Our experiments
using a model image and a medical image show that our
method using the m=4,3 RI-Spline wavelet has better de-
noising performance than that of the m=4 spline wavelet
and the smoothing filter.

5. CONCLUSIONS

In this study, we extended the 1-D RI-Spline wavelet to the
2-D RI-Spline wavelet and developed the 2-D CDWT us-
ing the 2-D RI-Spline wavelet. Translation invariance in
the image processing has been achieved by using the 2-D
RI-Spline wavelet. Furthermore, the 2-D RI-Spline wavelet
was applied to image processing and experimental results
using a model image and a medical image de-noising show
that by using our method better results can be obtained than
that obtained by the traditional 2-D DWT.

6. REFERENCES

[1] S. Mallat, “A theory for Multiresolution Signal Decomposi-
tion: The Wavelet Representation,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, 11-7, 1989, 674-693.

[2] S. Mallat, a wavelet tour of signal processing, Academic
Press, 1999, 146

[3] N. Kingsbury, “Complex Wavelets for translation invariant
analysis and filtering of signals,” Journal of Applied and
Computational Harmonic Analysis, 10-3, May 2001, 234-
253.

[4] F. C. A. Fernandes et al., “Complex wavelet transforms with
allpass filters,’Signal Processing, 88-8, 2003, 1689-1706.

[5] Z. Zhang, H. Fujiwara, H. Toda and H. Kawabata, “A New
Complex Wavelet Transform by Using RI-Spline Wavelet, ”
Pro. ICASSP 2004, 11, 937-940.

[6] Z.Zhang, H. Fujiwara, and Fuji Ren, “Signal Processing Us-
ing Translation Invariant RI-Spline Wavelet, ” Proc. IEEE
SMC 2004.

IV - 536

I 2



