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ABSTRACT

A constructive factorization procedure for a polynomial pa-
raunitary matrix as a product of atomic paraunitary matri-
ces, each of lowest degree is given. The generic form of
these paraunitary factors results from the use of projection
matrices. In the univariate case each factor is of degree 1. In
the multivariate case the generic factor is constructed based
on the assumption of its existence .

Key words: Multivariate polynomial paraunitary ma-
trix factorization, projection operators.

1. INTRODUCTION

For a discursive discussion on factorization of a FIR (n x n)
univariate paraunitary matrix with determinant z =~ as a
product of IV paraunitary matrices, each having determinant
1, see [1]. Factorizations using a dyadic-based basic build-
ing block and rotation-based (Householder, Givens) basic
building blocks lead to structures with different finite arith-
metic properties. While a basic factor is parameterized by a
unit norm vector and has a generic form, the construction
of the factorization from a specified polynomial parauni-
tary matrix involves some calculations. The procedure pre-
sented here not only reduces the computational chore but
also makes the extraction of each factor routine. Signif-
icantly, this procedure generalizes to multivariate FIR pa-
raunitary matrices and extracts the generic factor provided
it exists. For the sake of brevity, the basic problem is enun-
ciated in the bivariate case.

A square matrix A(z1,z2) € C"*™[z1, 2] is parauni-
tary provided

Az, 2)A* (5 L ) =1,

where I, is the identity matrix of order n and the star super-
script denotes complex conjugate transpose (hermitiancon-
jugate) and the bar superscript denotes complex conjugate.
Therefore,

det A(zy,20) = £2; 12,2

where l1, [ are integers. The problems are:

P1 to decompose A(z1,22) as a product of lower degree
“atomic” paraunitary matrices, where an atomic pa-
raunitary matrix cannot be decomposed any further
and

P2 parameterize, if possible, the atomic matrices in such
a way that filter bank realization is facilitated (when
n = 2, for example, it is well known that a univari-
ate paraunitary matrix can be factored as a cascade of
degree one lattices).

According to the procedure of Guiver and Bose [2], a non-
singular matrix F'(z1,22) € Q™*™[21, 22], where @ is an
arbitrary but fixed field, whose determinant has the irre-
ducible factorization

k
det F'(21,29) = H fi(z1, 22)
i=1

can constructively be factored as

k
F(z1,2) = [[ Filz1, 22),
i=1

det F;(z1, 22) = fi(z1,22),

through, importantly, computations only in the base field
Q.where F;(z1,22) € Q™ ™[z1, 22] is an atomic factor of
F(z1, z2). This factorization is unique up to unimodular or-
thogonal matrices. With the imposition of the paraunitary
constraint on F'(z1, z3), the application of the Guiver-Bose
algorithm may not yield all paraunitary factors F';(z1, 22),
fori =1,2,..., k. The question then becomes if an atomic
factorization involving only paraunitary factors is obtain-
able from the initial factorization. It is noted that the method
in [2] does not generalize to the n-variate case, n > 2, be-
cause C"*"[2y, 22, ..., 2] is not a determinantal factoriza-
tion domain when n > 2 [3, ch 5].
Itis well known that in the univariate case, the parametriza-
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for the unit norm vectors v; is complete. The parameter-
ized family of counterexample in [4] implies that the set
of products of degree 1 non-commutative atomic factors in
[LU—vivi(1—27")) and [[,(7 —wu} (1 — 25 ")) (where
v;’s and w;’s are unit norm vectors) is not complete.

2. PROJECTION OPERATOR ON THE IMAGE OF
A SINGULAR MATRIX

Let M be a singular matrix of M, (K)(or not of full rank
in My (K)) of rank r < n. The image of M forms a
subspace W of K™ . There is a bounded linear map P sat-
isfying P? = P from K" onto W and P is called a pro-
jection operator [5].The columns of P are the projections of
the standard basis vectors and W is the image of P. Form
T = MM*, where M* is the hermitian conjugate of M.
Note that 7 is a self-adjoint operator and Im(T") = Im(M).
Now, define the characteristic polynomial associated with
T, as xr(x). M, and hence T', being of rank r implies that
xr(z) = 2="Q(x), where Q(0) # 0. Then % is
the projection operator on 7”’s kernel and P = I — %
is the projection operator on 71”’s image. A square matrix
P is an orthogonal projection matrix iff P? = P = P*,
where P* denotes the adjoint of the matrix P. In particular,
for all matrices A and B such that Im(A) C Im(M) and
Im(B) C Im(M)*

PA=A , PB=0

3. APPLICATION TO 1D PARAUNITARY
POLYNOMIAL MATRICES

Let A(z7!) be a (n x n) paraunitary polynomial matrix of
exact degree d (i.e. Ay #0) in:

d d
AN =) 274, AT(ETY) =) A
i=0 =0

The paraunitary property yields A*(z 1) A(z) = I, from
which we can derive a system of quadratic equations in
terms of the coefficient matrices. One of these equations
is A§Aq = 0. Since Ag # 0, then rank(Ao) < n and
Ag LAy

Proposition 1 If P is the projection matrix associated with
Ag, then P + (I — P)z~Lis a paraunitary left factor of the
paraunitary matrix A(z71).

Proof:

The paraunitariness of P + (I — P)z ! follows from :

(P+(I—-P)z""Y*(P+ (I - P)z)
=(P*+(I—-P)z Y)Y (P+(I-P))
=P?>4+Pz—P%2+ Pz  —P?27 4+ 1 —2P + P2
=P+Pz—Pz+Pz'—Pzl47-2P+P
=1

The inverse of this paraunitary factor is evidently P + (I —
P)z.

Furthermore P + (I — P)z~! is a left factor of A(z~!)
as justified next Let A(z71)is A = Ag + Ajz71 + ... +
Agz~?. Then we can factor P + (I — P)z~! and compute
the remainder by left-multiplying A(z ~!) with the inverse
factor P + (I — P)z.

(P+ (I —P)2)A(z7Y)
=PAy+ PA;z7  + ..+ PAgz1
+ Aoz + Ay + ...+ Agz" -
— PAyz — PA; — ... — PAgz~ 4!

Since PAg = Ap, we can compute the term with posi-
tive power of z, as

A()Z—PA()ZZO

Moreover since P A4 = 0, therefore the remainder is a poly-
nomial matrix in z ! of reduced degree d — 1.

This leads to a very simple and powerful factorization
procedure for all 1D paraunitary matrices, by iteratively re-
peating this factor extraction step, until the remaining ma-
trix is a polynomial paraunitary matrix of degree one.

Comments :

e The computation of a factor only depends on the con-
stant term of the matrix.

o Contrary to most factorization methods, this proce-
dure does not act by reducing the degree of the ma-
trix’ determinant but the degree of the matrix’ ele-
ments. Therefore our final factors won’t necessarily
be of determinant one as in Vaidyanathan’s method or
Givens’ rotations or the Householder decomposition
[1]. This can only occur if the polynomial degree of
the elements is strictly less than the degree of the de-
terminant which happen when factors commute with
each other.

Example 1 Application to the two-channel case.
In the two-channel filterbank case, the computation of
the projection matrix is simplified as:

A A

P=——7——
TT’(A()AS) ’
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which has hermitian symmetry and is, equivalently, or-
thogonal. Indeed the charateristic polynomial becomes :
xr(z) = x(x — Tr(T)) and then Q(T) = T = Tr(T),
Q(0) =Tr(T),

b_gQm T
Q)  Tr(T)
Example 2 A simple example for the four-channel case
1+z_1 1—z~2
2
1—2"1 1+2z*41+z*2
A= 2 4
0 1—z"1
2
0 0
1—2_1—2_2+z_3 1—32_1+32_2+—z_3
1+z_1—§_2—z_3 1—2_1—81_2+z_3
8 8
1422714272 1—272
1 4
1—271 1427t
2 2

Let P*®) L") andR*) denote respectively, the projection
matrix, the associated left-factor and remainder at the k"
iteration. Then,

1/2 1/2 0 0
p) — 1/2 1/2 0 0
- 0 0 1 0
0 0 0 1
271! —z!
1+2_1 1 2_1 0 0
m—| =5 L 00
0 0 1 0
0 0 0 1
1 0 0
(1) 0 1+2:’1 1—22 1—22741-5—272
RY = 0 1—z"1 14—22*41+.:*2 1—2"2
: i 1+§*1
0 0 > >
1 0 0 0
p) — 0 1/2 1/2 0
- 0 1/2 1/2 0
0 0 0 1
1 0 0
B B
= -1 P
0 1= Lz 0
0 0 0 1
1 0 0 0
0 1 0 0
R(z): L1 _,1
00 t%l ;%71
0 0 5 5

A = LOLAR®) and the algorithm terminates because
the remainder R\ is an atomic paraunitary factor.

4. EXTENSION TO THE MULTIVARIATE CASE

We present here how this factorization algorithm can be
extended to the factorization of non-separable multivariate
matrices when possible. Indeed, as shown by Park [4] the
complete factorization into paraunitary matrices is not al-
ways possible, even if a general factorization exist [2]. If
the paraunitary factorization exists, it can be obtained from
Guiver and Bose’s factorization by the introduction of well-
chosen unitary matrices in between the factors.

But we can also again directly apply the projection op-
erator factorization. The condition for which the factoriza-
tion is possible emerges rather quickly from the algorithm
and it is interesting to notice that it comes back to the same
condition necessary to convert the Guiver and Bose’s fac-
torization into a paraunitary factorization.

For the bivariate case, suppose that A(z{", 25") is of
the form:

dy d2

AL ) =)0 Aije iz

i=0 j=0

Proposition 2 A polynomial paraunitary matrix in z; Lre-

sp. 25 *) of degree (1,0) (resp. (0,1)) and such that rank(Ago) =

m — 1, can be left-factored from A if and only if all the ma-
trices Agj ie Aoi,....Aod, (resp. Ay) are included in the
image of Aoo.

Proof

= Suppose A(z; ', 2, ') = L(2; A" (2, ', 2, ') where
L(z;') is of degree 1in 27 *. Define L(z; ') = Lo +
Liz7'. Then, in particular

Agj = Lo Ay, Vi€ {0,1,....d>}

so either Ag; is null or Im(Ag;) C Im(Ly) for any
j € {0,1,...,d2}. Therefore, all non-zero matrices
Ag; have same image.

< Suppose now Im(Ag;) C Im(Agg) for all j. Then
define L(z;*) = P + (I — P)z;* where P is the
projection operator associated with A,
L7 (2 DAG 2y
= PAy + PA012’2_1 + ...+ PA0d2Z2_d2
4 PAg g2y D2y ®
+ A0021 + A012122_1 + ...+ 140(122,’1227(12
oo Agy g2y D 2y
- PA0021 — PA()lZlZ;l — e — PA0d2212;d2

—di1+1 _—d2
—...—PAdleZl Z9
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There are no term with positive power in z5. The term
with positive power in z1, after recombining, is

21[(A00 — PAO()) + (A01 — PA01)22_1 + ...
+ (Aogy — PAgay)z; ] =0

since PAg; = Aoj Vj. Finally, we consider the
terms in z; ' which are of the form z; "' [PAg,0 +
o+ PAga,25 dz]. Once again the paraunitariness of
A(27h, 2571) gives a set of equations among which :

ASOAd1d2 =0
ASOAdldQ—l + ASIAd1d2 =0

AfoAdao + Af1 Aagy1 + - + ASdzAdldQ =0

From this it is easy to show that A4, ; L Aoy V7 and
equivalently PAg,; = 0 Vj. Thus the remainder
is indeed a paraunitary polynomial matrix of reduced
degree d; — 1in 27"

This result can be readily extended to the n-variate case
as long as Im(Ao k... k,) C Im(Aoo..0) Y(k2,...,kn).
Then we can proceed to extract the factor P + (I — P)z; *
where P is the projection matrix associated with the constant
term matrix Ago. 0.

Remark 1 The bivariate case of degree (1,d) or (d, 1) has
been studied by both Park [4] and Vaidyanathan [6]. Here
is a simpler proof of the result stating that the atomic factor-
ization is always possible for those types of matrices. Con-

sider once again a subset of the paraunitariness equations,
valid for the (1,d) case:

ASOAld - 0
AIOAOd =0
ASOAOd + AfoAld = 0

Clearly if no matrix is null, then Aoyl A1q and A19 L Agg,
consequently

e cither AfyAoa = 0, i.e. AgoLAoq implying that
Im(Ago) = Im(A10), so that a left-factor in 25" can
be extracted

o or AjyAoa # 0, and since Agg and A1 have to be
of rankl, therefore Im(Ay,) = Im(A%,), so that a
right-factor in z5 ! can be extracted

The procedure for extraction of a factor (left or right) in
Zy ! can be recursively implemented until the remainder be-
comes the atomic factor in z{ L. Any special case with null
matrices is trivial and leads to the same result. The argu-

ment is similar for the (d, 1) case.

5. CONCLUSION

A procedure based on the use of projection operator is ad-
vanced for the factorization of a prescribed square polyno-
mial paraunitary matrix as a product of atomic paraunitary
factors. In the univariate case, this procedure is simpler
than existing procedures, where the corresponding projec-
tion matrix is restricted to be of rank 1 and is difficult to con-
struct. It is conjectured that there exists at least one bivari-
ate polynomial paraunitary matrix of arbitrary but fixed de-
gree that is an atomic (irreducible) factor. Therefore, there
cannot be a canonic realization structure like the cascade of
lattices (in the 1-D two channel case) for the 2-D two chan-
nel case. Due to the use of nonsquare bivariate polynomial
matrices in signal processing and control, the role of parau-
nitariness in such a setting needs to be investigated.
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