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ABSTRACT

We propose an efficient algorithm for designing the prototype fil-
ters of oversampled, near perfect reconstruction (NPR), GDFT
modulated, biorthogonal filterbanks with arbitrary delay. Given
the analysis prototype, we show that the minimization of the stop-
band energy of the synthesis prototype, subject to NPR constraints
on the frequency response of the distortion transfer function, can
be expressed as a convex optimization problem. Our algorithm
consists of initialization with the prototype of an orthogonal filter-
bank and then successive optimization of the synthesis and analy-
sis prototypes. We compare our algorithm with previous methods
and give several design examples.

1. INTRODUCTION

Recent studies [1, 2, 3] on subband adaptive filtering have shown
that good performances and flexibility are obtained by using over-
sampled nearly perfect reconstruction filterbanks. Moreover, a
low implementation complexity is ensured by uniform filterbanks
whose filters are obtained by (complex) modulation from a single
prototype; the filters have complex coefficients, but the prototype
is real. In this paper, we give an efficient design algorithm for such
filterbanks.

A general filterbank (FB) structure is presented in Figure 1.
The FB is oversampled when the down-sampling factor R is smaller
than the number of channels M . The subband signals xk[n], k =
0 : M − 1, are processed by adaptive filtering or other type of
algorithm; however, since here we are interested in a general de-
sign method, we can ignore the subband processing and assume
that yk[n] = xk[n]. We assume that all analysis filters Hk(z)
and synthesis filters Fk(z), k = 0 : M − 1, have complex co-
efficients. Ideally, the passband of a filter has a width of 2π/M ;
more precisely, the passband of Hk(z) or Fk(z) covers the interval
[2kπ/M, 2(k + 1)π/M ], as shown in Figure 2b.

If the input signal is real, then only the first M/2 channels of
the FB are necessary. In this case, the FB processes the frequencies
between 0 and π; those from −π to 0 are discarded; no information
is lost, but the subband signals are complex. (Real subband signals
could be used, but with a down-sampling factor R twice smaller,
as shown in [4].)

If the output signal is a delayed version of the input one, i.e.
y[n] = x[n−D], where D is a positive integer, then the filterbank
is perfect reconstruction (PR); theory of oversampled modulated
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Fig. 1. M -channel filterbank.

PR FBs is discussed in [5, 4, 6]. Since subband processing changes
the subband signals, near PR (NPR) filterbanks are more interest-
ing for practical purposes; in NPR filterbanks, y[n] approximates
x[n − D], in a sense that will be detailed later.

We consider generalized DFT (GDFT) modulated filterbanks,
whose filters have the impulse responses

hk[n] = h[n]ejπ(2k+1)(n−D/2)/M ,

fk[n] = f [n]ejπ(2k+1)(n−D/2)/M ,
(1)

where h[n] and f [n] are the impulse responses of the analysis and,
respectively, the synthesis prototypes. The prototypes are FIR fil-
ters of degrees Nh and Nf , whose transfer functions are denoted
H(z) and F (z), respectively. The idealized magnitude responses
of the analysis prototype and filters are given in Figure 2. For
the synthesis bank, the responses are similar. We treat the gen-
eral case of biorthogonal filterbanks, in which the only relation
between H(z) and F (z) is that imposed by the NPR condition,
as detailed later in Section 2. Orthogonal GDFT filterbanks, in
which Nh = Nf and fk[n] = h∗

k[Nh − n], have a fixed delay,
i.e. D = Nh. The only way to obtain simultaneously low de-
lay and good filtering properties is to use biorthogonal filterbanks.
Design methods for oversampled NPR orthogonal FBs are given in
[7] (and [5, 4] in the PR case). For oversampled NPR biorthogo-
nal FBs, design algorithms are presented in [3, 6]; we will explain
later the differences between these methods and the one we pro-
pose here.

The input-output relation for the FB from Figure 1 is

Y (z) = T0(z)X(z) +

R−1∑
�=1

T�(z)X(ze−j2π�/R), (2)
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Fig. 2. Magnitude response of an eight-channel GDFT filterbank:
a) prototype filter, b) analysis filters.

where

T0(z) =
1

R

M−1∑
k=0

Hk(z)Fk(z) (3)

is the distortion transfer function and

T�(z) =
1

R

M−1∑
k=0

Hk(ze−j2π�/R)Fk(z), (4)

for � = 1 : R − 1 are called aliasing transfer functions.

2. SIMPLIFIED DESIGN PRINCIPLE

To obtain oversampled NPR FBs, we impose two conditions. The
first is that the prototype filters, H(z) and F (z), have a magni-
tude response that is very small outside the baseband [0, π/R] as
suggested in Figure 2a, i.e.

|H(ejω)| ≤ δs, |F (ejω)| ≤ δs, for π/R ≤ ω ≤ π. (5)

It can be proved that the aliasing transfer functions (4) are bounded
in the sense that

|T�(ejω)| ≤ δa, (6)

where δa ≤ κδs, with κ a constant proportional with M/R. With
prototypes obeying to (5), the second NPR condition is on the dis-
tortion transfer function (3), in the form

|T0(ejω) − e−jDω| ≤ δd, (7)

where δd is a conveniently chosen constant. Assuming |X(ejω)| ≤
1, then if δs � δd, satisfying (5) and (7) leads to the NPR condi-
tion

|Y (ejω) − e−jDωX(ejω)| ≤ δ̃d, (8)

where δ̃d > δd, but practically δ̃d ≈ δd. A similar design principle
was used for orthogonal FBs in [7, 8]; there, relation (7) had the
specific form of a power complementarity constraint. Here, we
generalize the principle to biorthogonal FBs.

The next result shows that the distortion transfer function has
a very simple form in the case of GDFT FB. The proof is omitted;
it consists of straightforward manipulations of the basic relations
(1) and (3).

Theorem 1 Consider the M -channel GDFT FB with filters de-
fined as in (1). Let h, f be the vectors containing the coefficients

of the analysis and synthesis prototypes, respectively (of length
Nh + 1 and Nf + 1, respectively). Then, the distortion transfer
function (3) has the expression

T0(z) =
M

R

∑
i, 0≤D+iM≤Nt

(−1)i(hT ΨD+iMf )z−(D+iM),

(9)
where Nt = Nh + Nf is the order of the distortion transfer func-
tion and Ψn is the elementary Hankel matrix having ones on the
anti-diagonal n and zeros elsewhere (anti-diagonals are counted
from zero, starting from the upper-left corner).

Remark: There are at most (Nt+1)/M nonzero coefficients in
the sum from (9), i.e. a very small number; this is a very favorable
feature in reducing the complexity of optimization algorithms.

3. PROPOSED DESIGN ALGORITHMS

The prototypes of the GDFT FB are optimized by minimizing their
stopband energy, which has favorable effects on aliasing. A good
stopband ripple δs, as defined in (5), is obtained as a side effect by
taking a stopband edge ωs slightly smaller than π/R, namely

ωs = (1 + ρ)π/M, (10)

with ρ slightly smaller than M/R − 1. The stopband energy (of
the analysis prototype) is

Es =

∫ π

ωs

|H(ejω)|2dω = hT Φh, (11)

where Φ is a positive definite Toeplitz matrix with the element φn

on diagonal n defined by

φn =

{
π − ωs, if n = 0,

− sin(πωsn)
πn

, otherwise.
(12)

We implement the simplified NPR constraint (7), using the
expression (9) of the distortion transfer function, in the form∥∥∥∥M

R

[
hT C(ω)f
hT S(ω)f

]
−

[
cos ωD
sin ωD

]∥∥∥∥ ≤ δd, for ω ∈ Ω, (13)

where Ω is a discrete grid of frequencies and

C(ω) =
∑

i(−1)iΨD+iM cos ω(D + iM),
S(ω) =

∑
i(−1)iΨD+iM sin ω(D + iM).

3.1. Orthogonal FB

In an orthogonal FB, the synthesis prototype vector f contains the
coefficients of the analysis prototype h, in reverse order. Then, the
next equality holds,

hT Ψnf = hT Θnh,

where Θn is the elementary Toeplitz matrix with ones on the diag-
onal n and zeros elsewhere. The problem of minimizing the energy
(11) subject to the NPR constraints (13) is equivalent to a convex
optimization problem, in terms of the coefficients of the product
filter H(z)H(z−1); see [9] for details on this type of transfor-
mation, that leads to a semidefinite programming (SDP) problem.
The same idea has been used in [7], but with a time-domain con-
straint on the coefficients of the distortion transfer function (9).
We remark that each frequency domain constraint of type (13) has
a second order cone (SOC) form; SOC is a particular case of SDP,
with faster implementation.
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Table 1. Outline of proposed algorithm for designing oversampled
NPR biorthogonal filterbanks.
Input: M - the number of channels, D - FB delay, R - the down-
sampling factor, ωs - the stopband edge, δd - the maximum NPR
error from (7), Nh, Nf - the orders of the analysis and synthesis
prototypes, N0 - the order of the analysis prototype for the first
iteration.
1. Design oversampled NPR orthogonal FB, with prototype
H(z) of order N0, as described in Section 3.1.
2. Solve the SOC problem (15) for F (z) of order Nf , using
H(z) computed at step 1.
3. Reversing the roles of h and f , solve the SOC problem (15)
for H(z) of order Nh, using F (z) computed at step 2.

3.2. Biorthogonal FB

Let us assume for the beginning that the analysis prototype H(z)
is given. We next show that the optimization of the synthesis pro-
totype has a convex formulation, as a SOC problem. Minimizing
the stopband energy of F (z) subject to the NPR conditions (13),
i.e.

minf fT Φf
subject to (13)

(14)

can be expressed in the form

min
f,α

α (15)

s.t. ‖Φ1/2f‖ ≤ α∥∥∥∥M

R

[
cT (ω)
sT (ω)

]
f −

[
cos ωD
sin ωD

]∥∥∥∥ ≤ δd, for ω ∈ Ω

where c(ω) = C(ω)h and s(ω) = S(ω)h are constant vectors
for a given frequency ω. The optimization problem (15) is a typical
SOC problem. Since this is a convex optimization problem, the
solution is unique.

Certainly, if F (z) is given, then H(z) can be optimized simi-
larly. We propose the following idea for the design of a biorthog-
onal FB. First, an orthogonal FB is designed, using the algorithm
suggested in Section 3.1. The obtained prototype, H(z) is used as
analysis prototype and a synthesis prototype F (z) is computed by
solving the SOC problem (15). Finally, a new analysis prototype
is obtained solving the problem similar to (15) for given F (z) and
unknown H(z). Theoretically, this procedure could be continued,
but we have noticed that usually no significant improvement is ob-
tained. The algorithm is described formally in Table 1. We note
that the initial prototype (for the orthogonal FB) may have an order
N0 different from Nh; in our experiments, we have remarked that
it is beneficial to take N0 ≤ Nh, N0 ≤ Nf . This three-step al-
gorithm is useful especially when we desire prototypes H(z) and
F (z) with similar orders and performance. Otherwise, using only
the first two steps of the algorithm (with N0 = Nh) gives also
good results.

Our algorithm differs from those in [6, 7] in several features.
We offer the possibility of controlling the NPR error δd at all fre-
quencies (in [6, 7], the synthesis prototype is optimized using a
composite criterion, combining stopband energy and an integral
NPR error). Moreover, designing the initial analysis prototype as
part of an orthogonal FB appears to be more meaningful than the
use of the Remez algorithm in [6] or the approximate linear phase
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Fig. 3. Frequency responses of prototypes in Example 1.

filter from [7]. Finally, we remark that our algorithm imposes no
apriori relation between the delay D and the orders Nh, Nf .

4. DESIGN EXAMPLES

The algorithm described in the previous section has been imple-
mented using the SDP library SeDuMi [10]. We give here three
examples of design.

Example 1. The design data are taken as in the first example
of NPR FB from [6], i.e. M = 16 (8 channels are used for real
signals), R = 6, Nh = 53, Nf = 59. We take the delay D = 40
(in [6], the delay appears to be 59). The stopband edge ωs from
(10) is defined by ρ = 1.6 (value slightly smaller than M/R−1 =
1.667). The distortion transfer function bound from (7) is δd =
0.01; in [6], where this parameter is not directly controlled, the
amplitude distortion of the FB is more than 0.04. With N0 = 51,
we have obtained the prototypes whose frequency responses are
shown in Figure 3. The dashed line marks the frequency π/R, i.e.
the edge of the baseband. The attenuations outside the baseband
are Ah = 78.7dB for the analysis prototype and Af = 79.1dB
for the synthesis prototype. In [6], these values are less than 60dB
(the analysis prototype is an equiripple filter), so our FB is clearly
better.

Example 2. The complex filterbank has M = 64 channels
(only 32 used for real signals). The delay is D = 80. The down-
sampling factor R is 16. Accordingly, the stopband edge ωs is
defined by ρ = 2.9 (while M/R− 1 = 3). The distortion transfer
function bound is δd = 0.003 (about 50dB). We want prototypes
that have similar orders (|Nh − Nf | ≤ 4) and at least 60dB stop-
band attenuation (i.e. δs = 0.001 in (5)).

To obtain such prototypes, we have run our algorithm for dif-
ferent orders N0, Nh and Nf . We report the FBs with smallest
order satisfying the requirements. We have obtained Nh = 96,
Nf = 94 (with N0 = 76). The frequency responses of the
analysis and synthesis prototypes are shown in Figure 4. The at-
tenuations outside the baseband are at least Ah = 60.5dB and
Af = 60.0dB.

The initial order N0 is not a critical parameter. We show in
Table 2 the values of the attenuations Ah and Af and also of the
stopband energies Eh and Ef (for the analysis and synthesis pro-
totypes, respectively), as well as their averages, for Nh = 96,
Nf = 94 and different values of N0. It is clear that the averages
are approximately constant; hence, the parameter N0 is interesting
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Fig. 4. Frequency responses of prototypes in Example 2.

Table 2. Attenuations and stopband energies for prototypes ob-
tained with different initial orders N0 (with Nh = 96, Nf = 94).

N0 Ah Af
Ah+Af

2
Eh Ef

Eh+Ef

2

64 58.37 63.10 60.73 3.1e-8 0.7e-8 1.93e-8
68 59.24 60.88 60.06 2.4e-8 1.3e-8 1.89e-8
72 59.99 60.45 60.22 2.0e-8 1.6e-8 1.81e-8
76 60.50 60.02 60.26 1.8e-8 1.9e-8 1.81e-8
80 60.72 59.88 60.30 1.6e-8 2.0e-8 1.82e-8
84 60.65 59.93 60.29 1.7e-8 1.9e-8 1.82e-8
88 60.72 59.87 60.30 1.6e-8 2.0e-8 1.82e-8
92 60.86 59.73 60.30 1.6e-8 2.1e-8 1.84e-8

only if one desires to match the orders and performances of the two
prototypes. The design time for each such FB is about 6 seconds
on a Pentium III PC at 1GHz.

Example 3. The only parameters changing values with respect
to Example 2 are R = 20 and ρ = 2.1 (while M/R − 1 = 2.2).
The frequency responses of the prototypes are shown in Figure 5.
The orders are Nh = 130 and Nf = 134 (with N0 = 124). The
attenuations are Ah = 61.0dB, Af = 61.3dB and the stopband
energies Eh = 1.17e-8 and Ef = 5.72e-8. The execution time
for obtaining the FB is about 17 seconds.

5. CONCLUSIONS

We have proposed an algorithm for the design of oversampled
NPR GDFT modulated filterbanks. The algorithm consists of solv-
ing an SDP problem for designing the prototype of an orthogonal
FB (used as initialization) and then solving two SOC problems
(15), for obtaining first the synthesis, then the analysis prototype;
each time, the other prototype is the one given by the solution of
the previous problem. The algorithm not only gives good FBs, but
allows obtaining analysis and synthesis prototypes with similar de-
grees and stopband attenuations (or energies).

Continuing the current work, we will study methods for de-
signing nonuniform low-delay oversampled FBs.
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Fig. 5. Frequency responses of prototypes in Example 3.
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