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ABSTRACT 
The modulation spectrum is a promising method to incorporate 
dynamic information in pattern classification. It contains impor-
tant cues about the nonstationary content of a signal and yields 
complementary improvements when it is combined with conven-
tional features derived from short-term analysis. Many prior 
modulation spectrum approaches are based on uniform modula-
tion frequency decomposition. The drawbacks of these ap-
proaches are high dimensionality and a lack of a connection to 
human perception of modulation. This paper presents multi-scale 
modulation frequency decomposition and shows an improvement 
over standard modulation spectrum in a digital communication 
signal classification task. Features derived from this representa-
tion provide lower classification error rates than those from a 
constant-bandwidth modulation spectrum whether used alone or 
in combination with short-term features.   

1. INTRODUCTION 
In pattern recognition, conventional feature analysis is usually 
based on short-time analysis of data, that is, over a short data 
window. Although short-term features have shown good per-
formance under some assumptions, several researchers, e.g. [1], 
have raised the question of whether using only short-term fea-
tures is adequate for nonstationary signal classification. These 
short-term features cannot sufficiently model time-varying in-
formation of nonstationary signals without classifier memory 
(e.g., Hidden Markov Models) and/or features with expanded 
temporal extent. To overcome the deficiencies of short-term fea-
tures, much work [2-4], motivated by psychoacoustic results, has 
investigated modulation spectrum for long-term signal analysis. 
The modulation spectrum not only contains short-term informa-
tion about the signals, but also provides long-term information 
representing patterns of time variation. Incorporating modulation 
spectral features into signal classification can provide significant 
improvement over systems using only short-term features in a 
broad range of applications [2-5]. 

Two approaches for generating a modulation spectrum are 
to take a Fourier [1] or DCT [3, 6] transform of a sequence of 
short-term magnitude spectrum features. Since this analysis uses 
uniform frequency decomposition, the resulting modulation fre-
quency resolution is constant. Uniform modulation frequency 
decomposition may not be appropriate for classification due to 
the resulting high feature dimension; furthermore, it does not 
match models of human auditory perception. Recent studies [7, 
8] of auditory frequency selectivity for amplitude modulation 
showed that a log frequency scale best matches human percep-
tion of modulation frequency. Accordingly, to overcome these 
disadvantages, a wavelet transform is applied as the second trans-
form to yield a multi-scale modulation frequency decomposition. 
The new representation not only yields much lower feature di-
mensionality compared to the standard modulation spectrum, but 
also provides high discrimination capability and low sensitivity 
to distortions. Experiments using real world communication sig-
nals show that multi-scale modulation spectrum can provide 

classification error rates lower than uniform modulation spectrum 
whether they are used exclusively or in combination with short-
term spectral features. 

2. MODULATION SPECTRUM 

2.1. Previous methods 
A conventional joint frequency representation ( , )xP η ω  is the 
correlation function of a Fourier transform, ( )X ω , of  the time 
signal, ( )x t , where ω  and η  are referred to “Fourier” and 
“modulation” frequency, respectively, defined as [9]: 

( , )xP η ω * ( ) ( )2 2X Xω ωη η− += .         (1) 
This representation is related to a Wigner distribution by a Fou-
rier transform in η . To study the behavior of joint frequency 
analysis, a simple amplitude modulated signal, 

( ) (1 cos )cosm cx t t tω ω= +  where mω  and cω  are the modula-
tion and carrier frequencies, respectively, is used. Using (1), the 
joint frequency representation of this AM signal is illustrated in 
Figure 1a. Ideally for this AM signal, the desirable representation 
with reduced cross-terms and good energy compaction should 
have nonzero Dirac impulse terms at only ( 0, )cη ω ω= = ±
and ( , )m cη ω ω ω= ± = ± . As shown in Figure 1a, there are also 
undesirable cross-terms occurring at double modulation frequen-
cies, 2 mη ω= ± , and redundant terms occurring at much higher 
modulation frequencies, 2 cη ω= ± . The cross-terms can be 
interpreted as interference due to the quadratic nature of (1). 

To remove these undesirable terms, several approaches can 
be taken. Synchronized block averaging [10] can be applied if 
the statistics of its spectrum change periodically with period 

0T when the signal is observed for a long period of time. If the 
periodicity 0T  of the signal’s statistics is known, the cyclic spec-
trum ( , )xS η ω  can be approximated by averaging adjacent joint 
frequency estimates computed at intervals of 0T . ( , )xS η ω , as 
illustrated in Figure 1b, can be related to (1) as 

( )
0 00 ( , )( 2 sinc( , ) )x x

n

P T TS Tn ωη ωδ η ωη ω
∞

=−∞

= − ∗ . (2)

For arbitrary signals such as speech or music in which the 
frequency of periodicity is difficult to estimate, undesirable ef-
fects can be significantly reduced by a two-dimensional smooth-
ing function. A simple approach is to exploit the inherent 
smoothing properties of the spectrogram, which is referred to as 
the “modulation spectrum [1].” First, a spectrogram or other 
representation with an appropriately chosen window length is 
used to estimate a joint time-frequency representation of the sig-
nal. Then, a Fourier transform is applied along the time dimen-
sion of the spectrogram, yielding an estimate of the modulation 
spectrum ( , )SP

xP η ω , in which undesirable terms are smoothed 
and attenuated. Redundant terms are also removed as shown in 
Figure 1c. ( , )SP

xP η ω , can be linked to ( , )xP η ω  by 

( , )SP

xP η ω ( , ) ( , )x hP Pωη ω η ω= ∗       (3) 

where h is the window used in computing the spectrogram and  
( , )hP η ω  is the joint frequency representation of h .
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Figure 1: A joint frequency representation of an AM signal using (a) an instantaneous correlation function, (b) synchronized 
block averaging [10], and (c) a modulation spectrum computed from a spectrogram, as described above. 
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Figure 2: Computing the multi-scale modulation spectrum. The final representation is obtained by a time average for each fre-
quency and scale. 

2.2. Multi-scale modulation spectrum 
As demonstrated with an AM signal in Figure 1c, modulation 
spectral analysis has the potential to extract time-varying infor-
mation via the nonzero terms in the representation. When the 
analysis is applied to real-world signal, e.g. speech, music, or 
communication signals, these nonzero terms can represent vari-
ous quantities such as phonetic information, pitch, tempo, or 
symbol rate, and they are potentially useful for discriminating 
signal types in pattern classification. However, using previous 
modulation spectral analysis as feature extraction still suffered 
from a fundamental disadvantage, namely that it yields a much 
larger dimension than traditional short-term spectral estimates. 
Past research has addressed the method of reducing feature di-
mension of a two dimensional representation in various ways. 
Since we are interested in tasks where human auditory signal 
classification is largely successful, integrating psychoacoustic 
results into the analysis can possibly provide added advantages in 
feature design and selection. 

Using Fourier analysis, or other uniform frequency decom-
positions, for the modulation frequency transform in modulation 
spectra results in a uniform frequency bandwidth in modulation 
frequency dimension; however this approach for modulation 
decomposition can be inefficient for auditory classification due 
to the resulting high dimensionality. Furthermore, the uniform 
bandwidth in modulation frequency does not mimic the human 
auditory system. Inspired by psychoacoustic results [8], a log 
frequency scale, with resolution consistent with a constant-Q
over the whole range, best mimics human perception of modula-
tion frequency. Auditory modulation filters with frequencies up 
to 64 Hz are approximated constant-Q, with a value of about 1. 
Our approach uses a continuous wavelet transform (CWT) to 
efficiently approximate this constant-Q effect, though we could 
also less efficiently achieve constant-Q by grouping Fourier coef-

ficients. The multi-scale modulation spectrum representation is 
the joint representation of the Fourier frequency and modulation 
frequency with nonuniform bandwidth for the latter. As illus-
trated in Figure 2, the analysis consists of three important steps. 
It starts with a standard spectrogram of ( )x t :

( , )SP
xP t ω

2
*1

( ) ( )
2

j ux u h u t e duω

π
−= − .    (4) 

In the second step, for discrete scales s , the wavelet filter ( )tψ
is applied along each temporal row of the spectrogram output:  

( , , )SP
xP s ζ ω *( , ) ( )

1 SP

x
P

s s
ζ

ζ
ζ ω ψ∗ −= .   (5) 

The above equation can be viewed as applying wavelet transform 
on a temporal envelope in each Fourier frequency subband ex-
cept the scaling term 1 s  which serves for normalizing the pass-
band magnitude of each filter to be equal. And in the last step, 
the energy across the wavelet translation axis ζ  is integrated: 

( , )SP
xP s ω 2

( , , )SP
xP s dζ ω ζ= .    (6) 

The above equation yields a joint frequency representation with 
nonuniform resolution in the modulation frequency dimension, 
as indexed by the discrete scale s .

There are many advantages of using wavelet based trans-
form over Fourier ones in modulation decomposition. For classi-
fication purpose, we showed in [5] that a wavelet approach pro-
vided better distribution of frequency resolution in modulation 
frequency by showing correctly distinct nonzero terms of multi-
component AM signals. For example, when we compared wave-
let and Fourier in term of energy compaction for synthesis and 
analysis purpose, nonuniform modulation decomposition also 
achieved higher signal-to-noise ratio in reconstructed speech and 
music signals for different compression rates. 
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3. EXPERIMENTS

3.1. Task

In many applications such as interception of battlefield commu-
nications, the modulation type transmitted over analog channels
is unknown, and identifying the type is a critical first step in
monitoring the communication channel. Past research in auto-
matic identification of modulation type has used a combination
of short-term spectral features. Benvenuto [11] introduced the
second-order moment of a complex envelope of a signal for dis-
tinguishing speech from voiceband data. Sewall and Cockburn
[12] improved upon Benvenuto’s work by discarding the de-
modulation stage and still achieved comparable performance
with less computation. Hsue and Soliman [13] employed zero
crossing variance, carrier-to-noise ratio, and carrier frequency
features. Later, they proposed the statistical moment of the signal
phase [14]. Recently, Azzouz and Nandi [15] proposed a new
framework that made a significant contribution to the field of
modulation classification. This framework utilized moments of
the instantaneous amplitude, phase, and frequency of the signal.
A combination of these short-term features with conventional
classifiers, such as a decision tree or neural network, showed
high performance for both analog and digital modulation classifi-
cation. Since then these key features have been incorporated in
several studies with additional short-term features. In this work,
our main goal was to improve the performance of short-term
features by incorporating long-term modulation features. We
show that multi-scale modulation spectral features can provide
lower error rates than conventional modulation spectral features
when they are used independently or in combination with other
features. Statistical short-term features [15] previously used in
this application were chose for comparison.

3.2. Feature Extraction and Classification

The data
1
used in the experiments was collected and labeled by

an expert listener. The dataset contained four different modula-
tion classes: FSK (frequency shift keying), MFSK (multilevel
FSK), PSK (both binary phase shift keying and multilevel PSK),
and MCVFT (multichannel FSK and/or multichannel PSK).
These 216 files shown in Table 1 contained several communica-
tion modes, such as idle, traffic, or both. The details of each sig-
nal file can be found in [5].

First, each file was resampled to 11025 Hz and all long si-
lences were removed, the resampled audio was partitioned into 3
second windows for long-term feature analysis and 50 ms win-
dows for short-term feature analysis. For every 3-second block
with a frame rate 50 ms, modulation scale features were gener-
ated using a spectrogram 128 point and Hanning window. A
window shift of 21 samples was used to reduce the subband sam-
pling rate to about 512 Hz during the modulation transform. For
multi-scale modulation spectrum, biorthogonal wavelet filters,
with 8 different dyadic scales, were applied to produce one non-
uniform modulation frequency vector in each Fourier subband.
After generating two-dimensional modulation scale fea-
tures [ , ]

mod d
P s k , feature normalization was applied.

Table 1: The number of files and feature frames used in the

experiments.

Type FSK MFSK PSK MCVFT

Number of files 77 41 72 26

Number of frames 26365 9056 19067 8158

____________________________________________

1
The database is available at http://rover.vistecprivat.de/~signals/.

Due to the method of data collection, the nature of the initial
demodulation process may introduce a Fourier frequency shift in
the joint frequency representation. Because of this frequency
translation, we cannot directly apply modulation scale features to
typical classifiers. To reduce this effect, the post processing to
modulation features is necessary.

If the signal is shifted by
0

� in a Fourier frequency dimen-
sion, i.e. 0( ) ( )

j t
y t e x t

�= , what results is a shift in the � di-
mension or

, , 0
[ , ] [ , ]

mod y d mod x d
P s k P s k k= � for discrete implemen-

tation where
0
k is the amount of frequency translation. Equiva-

lently, this effect can be viewed as a vertical shift while the hori-
zontal structure in the joint frequency representation remains the
same. When using the SVD, we can estimate the Fourier fre-
quency vectors

a
P and modulation scale vectors

m
P

given
mod,x
P , the feature matrix with rank r , by (where � is a

nonnegative weight)

1

T
[ ] [ ][ , ] U V .

r

a m

j j j

j

mod,x d d x x x
P k P sP s k �

=

= = �� (7)

� is a diagonal matrix of singular values, U is the matrix of left
eigenvectors, and V is the matrix of right eigenvectors. When
this representation is shifted vertically, the resulting feature ma-
trix

0
[ , ]

mod,x d
P s k k� can be approximated as a row permutation

of [ , ]
mod,x d
P s k . A row permutation in the matrix results in a row

permutation of the left singular vectors implying that the fre-
quency shift affects only

a
P values.

( ) T

0 r
[ , ] [ , ] I U V

mod,y d mod,x d x x x
P s k P s k k= � = � (8)

Since
m
P (or V ) and � (or � ) are insensitive to Fourier fre-

quency shifts, they have potential for long-term features that are
insensitive to frequency translations. Because

mod
P can be mostly

represented using only one basis vector, we derived multi-scale
modulation spectrum features, called MODS, as

1 1 1
MODS[ ] [ ] [ ].

m m

s

s sign P s P s�= � �
� �
� �
� (9)

For conventional modulation spectral features, a Fourier
transform was applied instead of a wavelet transform. Note that,
both modulation spectral features have the same feature dimen-
sion. For comparison, short-term features using 50 ms non-
overlapping data window were considered. There are two sets of
short-term features. The first set is 8 dimensional high order
moment features. These features have been commonly used in
modulation classification to describe the spread and peakedness
of signals. More details about these moment features can be
found in [15]. Five other conventional short-term features, also
insensitive to frequency shift, were extracted. They are the modi-
fied second-order moment of the real-valued rectified passband
signal, the mean and standard deviation of the demodulated
baseband spectum, and the entropy and bandwidth of the short-
term spectrum. All features were normalized by the standard
deviation estimated from all signal classes to reduce their dy-
namic range. Two parametric classifiers, Gaussian Mixture Mod-
els (GMMs) and Hidden Markov Models (HMMs), were used in
the experiments. With GMM classifiers, a diagonal covariance
matrix was used for each Gaussian component. To prevent singu-
larities in the model’s likelihood function, variances were con-
strained to have a minimum value of 0.001 in all our experi-
ments. For the HMM classifiers, fully connected topologies that
allow transitions between any pair of states were used. From
preliminary experiments, these models performed better than
left-to-right models. As with the GMMs, the diagonal covariance
matrix was used for each Gaussian component. To find the opti-
mal number of states and mixture components, many structures
were explored.
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Table 2: The classification error rates of different features using GMM and HMM classifiers where the leave-one-out approach 
was used to evaluate the performance. 

Features Gaussian Mixture Models Hidden Markov Models 

Short-term spectral  25.5% 25.5% 

Modulation Spectrum  31.9% 27.8% 

Modulation Spectrum + Short-term Spectral 21.8% 22.7% 

Multi-scale Modulation Spec 30.1% 27.3% 

Multi-scale Modulation Spec + Short-term Spectral 19.4% 19.0% 

3.3. Results 
Due to the small amount of data, a leave-one-out approach was 
employed to evaluate all experiments. For each test file, the class 
giving the maximum posteriori probability was chosen. In order 
to obtain reliable estimates, the ratio of training data to the num-
ber of model parameters was considered to be at least ten. From 
Table 1, there are about 8000 frames of the MCVFT class corre-
sponding to 15 mixtures for GMM classifiers. The minimum 
error rates for each feature using GMMs was chosen from 15 
experimental results and summarized in Table 2. Using only 
modulation spectrum or multi-scale modulation spectrum does 
not provide error rates lower than using only conventional short-
term features. These effects were consistent with the results in 
[2]. However, when the short-term features were combined with 
long-term features, the error rate was significantly reduced. 
Multi-scale modulation spectrum combined with short-term fea-
tures yielded an error rate of 19.4% which was lower than the 
error rate of modulation spectrum combined with short-term 
features, 21.8%, an 11% reduction in error rate over standard 
modulation spectral analysis using GMM classifiers. For HMM 
classifiers, to find the optimal number of states and mixture com-
ponents, a ratio of the number of training data to the total number 
of parameters of at least ten was still applied. The maximum 
number of states and mixture components were 10 and 15, re-
spectively. The minimum error rate for each feature was chosen 
from 80 experimental results and summarized in Table 2. In test-
ing with dynamic classifiers, the inclusion of multi-scale modula-
tion spectrum into the feature extraction also yielded an error rate 
lower than combining modulation spectrum. Multi-scale modula-
tion spectral analysis achieved 16% reduction in error rate over 
standard modulation spectral analysis using HMM classifiers. 

4. CONCLUSIONS 
We present an improvement to the modulation spectrum using 
multi-scale decomposition of modulation frequency. The multi-
scale modulation spectrum incorporates recent knowledge about
human perception in modulation dimension in the design. The 
fundamental advantage of this approach is reduced dimensional-
ity. When compared to a uniformly spaced modulation spectrum 
in digital communication signal classification, the multi-scale 
approach provided error rates lower than the standard modulation 
spectrum approach. In a study using real-world data with long-
term (i.e., modulation) features combined with short-time fea-
tures, the multi-scale method achieved an 11-16% reduction in 
error rate compared to a uniform-resolution modulation spec-
trum, and a 24-25% reduction in error rate when compared to 

conventional short-term features alone. These results were con-
firmed with both static (Gaussian Mixture Model) and dynamic 
(Hidden Markov Model) classifiers. 
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