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ABSTRACT

In this paper, a novel approach for spectral analysis of 

nonstationary signals is presented.  For this purpose, the Capon’s

Time Frequency Representation (CTFR) is employed. It is 

shown that the CTFR is an upper bound on the range of non-

unique solutions for power estimation of a complex sinusoid 

contaminated with unknown noise. A new local autocorrelation 

function using a Nonstationary Auto-Regressive (NAR) model is 

defined and used in the CTFR. This method efficiently models 

the autocorrelations of NAR processes. Synthetic signals are

generated in order to illustrate the superiority of the CTFR with 

NAR model in comparison to other methods.

1. INTRODUCTION 

Spectral estimation of stationary signals has been extensively

investigated; however, in many applications the signal are 

nonstationary therefore appropriate analysis of nonstationary

signals is required. In order to derive a Time Frequency

Representation  (TFR), Özgen [1] filtered the nonstationary

signal with an adaptive, time-varying filter centered at the

frequency of interest. The filter’s coefficients were chosen to

minimize the power of the filter output, which can be viewed as 

the power of the analyzed signal in the frequency of interest for

each time instant, i.e. the Capon’s TFR (CTFR). The CTFR is an 

extension of the Capon’s spectral estimation [2] to nonstationary

signals. It is a nonnegative method which suppresses the cross 

terms of spectrum analysis of nonstationary signals. In general,

it produces higher time-frequency resolution than the Short-

Time Fourier Transform (STFT) with the same window length. 

The STFT is the standard method for analyzing nonstationary

signals.

       Another basic approach for analyzing nonstationary signals

is the Wigner-Ville Distribution (WVD) [3]. The WVD is a pure

function of the signal, it does not involve an auxiliary and

arbitrary window and it produces a real TFR of the analyzed

signal.

       Computation of the CTFR requires a time-dependent

autocorrelation matrix, which can be estimated in different 

methods. The most common and intuitive one is a short-time

autocorrelation that assumes stationarity over short-time

durations. Kayhan et al. [4] proposed a time dependent

autocorrelation matrix based on the Data Adaptive Evolutionary

(DAE) spectrum. They modeled the signal in the frequency of

interest as a sinusoid with time-varying amplitude, which is 

expressed as a linear combination of orthonormal basis 

functions. The time-varying amplitude was estimated and 

substituted in the expectation to yield the autocorrelation matrix.

In [5] a consistent unbiased estimator for the correlation function 

of nonstationary Gaussian process was developed. 

       In this paper, a Nonstationary Auto-Regressive (NAR)

autocorrelation is defined. The NAR model [6],[7] is a 

parametric approach for characterizing nonstationary signals. In 

this method, the signal is modeled by an Auto-Regressive (AR) 

model, where the coefficients are allowed to vary with time as a 

linear combination of known basis functions. We use the NAR

parameters to extract the time dependent NAR-autocorrelation 

matrix, which is used to obtain the CTFR.

       The paper is organized as follows. A new interpretation for

the CTFR is given in Section 2. Section 3 presents the NAR 

autocorrelation. Section 4 presents simulation result of CTFR

using NAR autocorrelation matrix. Our conclusions appear in

Section 5. 

2. CAPON’S TIME-FREQUENCY REPRESENTATION

We develop a new interpretation for the CTFR. The 

nonstationary signal is modeled as a complex sinusoid in the 

frequency of interest with time-varying complex amplitude. This 

amplitude is estimated using a Best Linear Unbiased Estimator

(BLUE) for each instant n. Based on this model we show that the 

CTFR is an upper bound on estimating the square absolute

amplitude value in an unknown noise environment at a given

frequency and at a given instant . The signal is modeled as

follows,

n

0 0[ ] [ , ] exp( 2 ) [ ], 0 1,cy n A n f j f n u n n N    (1) 

in which the nonstationary signal y[n] is modeled in the

frequency of interest, 0f , and 0[ , ]cA n f  is the time-varying

complex amplitude, which is considered deterministic unknown. 

The zero-mean modeling error u[n], includes all frequency

components of y[n] different from the frequency of interest. We

will estimate the complex amplitude using a p-order linear filter:

0
ˆ [ , ] [ ] [ ],w y

H
cA n f n n (2)
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where contains the 

present and the  last p samples of the process ,

0 1 is the time-varying weight 

vector, and 

[ ] [ ], [ 1], , [ ]y
T

n y n y n y n p

[ ]y n

[ ] [ [ ], [ ], , [ ]]w
T

pn w n w n w n

( ) , ( )H T denote the conjugate transpose and the 

transpose operations, respectively. Assuming that the amplitude 

is constant over p+1 samples, Eq. (1) can be written in vector 

notation as, 

0 0[ ] [ , ] [ , ] [ ] ,y ecn A n f n f nu                   (3) 

where 0 0 0[ , ] [exp( 2 ), , exp( 2 ( ))]e
H

n f j f n j f n p and

.[ ] [ ], [ 1], , [ ]u
T

n u n u n u n p

       The unbiased constraint for estimating 0[ , ]cA n f  is 

obtained by inserting (3) into (2) and taking the expectation, 

0[ ] [ , ] 1w e
H

n n f  .            (4) 

The variance of the filter output from (2) is given by

0
ˆvar [ , ] [ ] [ ] [ ]uuw R w

H

cA n f n n n  ,            (5) 

where is the autocorrelation matrix

of the modeling error and

[ ] [ ] [ ]uuR u u
H

n E n n

[ ]E denotes the expectation operation. 

In order to obtain the BLUE for 0[ , ]cA n f , we will minimize

(5) with respect to subject to the constraint in (4). This

minimization yields,

[ ]w n

1
0

1
0 0

[ ] [ , ]
ˆ [ ]

[ ] [ ] [ ]
uu

uu

R e
w

e R eH

n n f
n

f n f
 ,               (6a) 

and the estimated amplitude minimum variance is

0 min 1
0 0

1ˆvar( [ , ])
[ ] [ ] [ ]

uu

.
e R ec HA n f

f n f
      (6b) 

The vector 0[ ]e f is no longer a function of time since, 

0 0 0 0 . If we insert (6a) into 

(2) with an arbitrary frequency f and take the square absolute

value we obtain a new periodogram-like TFR. 

[ ] [ , ] exp( 2 ) [0, ]e e ef n f j f n f

2
12

1

[ , ] [ ] [ ]ˆˆ [ , ] [ , ]
[ ] [ ] [ ]

uu
.

uu

e R y

e R e

H

c H

n f n n
P n f A n fu

f n f
         (7a) 

       The difficulty in estimating the lays in the noise 

autocorrelation matrix estimation, which models the signal in

frequencies different from the frequency of interest and without 

proper assumptions, cannot be estimated. The resemblances of 

to the periodogram is illustrated if the noise is assumed

to be white, for which (7a) reduces to 

ˆ [ , ]uP n f

ˆ [ , ]uP n f

21ˆ [ , ] [ ] [ ]
1

e yH
uP n f f n

p
  ,                 (7b) 

which forms a TFR based on the periodogram. In order to obtain

(7b), the periodogram of the last p+1 samples is calculated for 

each time instant n.

       For unknown noise autocorrelation, we can use Marzetta’s

interpretation [8] for the Capon’s spectral estimator and 

generalize it to the nonstationary case to yield the CTFR. The

autocorrelation matrix of , defined in (3), is [ ]y n
2

[ ] [ [ ] [ ]] [ , ] [ ] [ ] [ ]yy uuR y y e e R .
H H

cn E n n A n f f f n     (8a) 

We used in (8a) an arbitrary frequency f.  Let ,

and

ˆ [ ]yyR n ˆ [ ]uuR n

ˆ [ , ]cA n f  denotes the estimation of ,  and [ ]yyR n [ ]uuR n

[ , ]cA n f , respectively. Then an equivalent model to (8a) can

be stated as

2
ˆˆ ˆ[ ] [ , ] [ ] [ ] [ ]yy uuR e e

H

cn A n f f f nR  .       (8b) 

If the estimate of the sinusoid amplitude under unknown noise

conditions is required, then the decomposition of the 

autocorrelation matrix is non-unique. There is a range of values 

for ˆ [ , ]cA n f and  such that (8b) is satisfied. An upper 

bound on 

ˆ [ ]
uu

R n

ˆ [ , ]cA n f  can be obtained using the non-negativity of 

the modeling error autocorrelation. If the upper bound is

achieved, the noise autocorrelation matrix is singular. This

property is understood if one examines the noise autocorrelation 

matrix .  Let ˆ [ ]uuR n [ ]n  denote the smallest eigenvalue of 

and  denote the corresponding eigenvector. The

noise autocorrelation matrix is nonnegative-definite and 

therefore

ˆ [ ]uuR n [ ]n

2
ˆ[ ] [ ] [ ] [ , ] [ ] [ ] [ ]yyR e e  .

H H

cn n n A n f f f n     (9a) 

If we denote 0 as the smallest eigenvalue of  and 

notice that the matrix
[ ]n [ ]yyR n

[ ] [ ]e eHf f  has only one nonzero

eigenvalue [ ] [ ] 1e e
H

f f p , then 
2

0
ˆ[ ] [ ] [ , ] ( 1) .cn n A n f p              (9b) 

In general,  and 0 [ ]n [ ]n are nonnegative for each instant n.

Suppose that for some value of ˆ [ , ]cA n f ,  is positive-

definite. In this case,  is strictly positive and the value of

ˆ [ ]uuR n

0 [ ]n

ˆ [ , ]cA n f can always be increased to the point where  is 

singular i.e. 

ˆ [ ]uuR n

[ ] 0n . If we denote the upper bound of
2

ˆ [ , ]cA n f  by , then for nonzero eigenvector ,ˆ[ , ]P n f [ ]n

ˆ ˆ ˆ[ ] [ ] ( [ ] [ , ] [ ] [ ]) [ ] 0 [ ]uu yyR R e e  .
H

n n n P n f f f n n    (10) 

By rearranging (10), we obtain
1 1ˆ ˆ[ , ] [ ] [ ] [ ] [ ] [ ]yyR e e  .

H
P n f n n f f n         (11) 

The eigenvector  is also the eigenvector of the matrix

. Left multiplication of (11) by

[ ]n
1 H Hˆ [ ] [ ] [ ]yyR e en f f [ ]e f  and 

considering the eigenvector which is not orthogonal to [ ]n

[ ]e
H

f  and solving for yields,ˆ[ , ]P n f

1

1
ˆ[ , ]

ˆ[ ] [ ] [ ]yy

 ,
e R e

H
P n f

f n f
     (12) 

which is identical to the CTFR that was previously given by

Özgen in [1]. Therefore, the CTFR at a particular frequency f

and instant n can be interpreted as an upper bound on the range

of non-unique solutions for the problem of time-varying power 

estimation of complex sinusoid in an unknown noise

environment. If the signal is stationary, then (12) reduces to the 

case of Capon’s spectral estimator.

3. NAR AUTOCORRELATION

A nonstationary autocorrelation estimator is required for (12).

The accuracy of this estimator directly affects the quality of the

time frequency estimated spectrum. Özgen in [1] used Kayhan’s
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autocorrelation with Fourier basis function. We propose a new 

NAR autocorrelation for this purpose. Based on the estimation

of the NAR model parameters a recursive algorithm is given for 

the modeling of the NAR autocorrelation.

     The NAR model characterizes nonstationary signals using a 

linear prediction model. The coefficients are allowed to vary

with time as a linear combination of known basis functions,

1 0
[ ] [ ] [ ] [ ], 0 1

p q

ik k
i k

y n b n i y n i v n n N .    (13) 

The nonstationary signal y[n] is modeled by  a p-order AR 

model with time-dependent coefficients. The driving noise v[n]

is a zero-mean white random variable with variance 2
v

, and 

 denotes the basis functions set. The basis

functions set can be arbitrary. For example the Fourier basis

functions set was defined in [7] as, 

0, ,[ ]{ }k kb q

[ ] cos( / ),kb n kn N

[ ] sin( / ),kb n kn N for even and odd values of k, respectively.

The NAR parameters are composed of the NAR coefficients 
{ }ik  and the driving noise variance 2

v
. The notation of p was

chosen here and in the CTFR to point out that in both cases we

use the same number of past samples of the signal for the 

estimation procedure. 

       The autocorrelation of a zero-mean NAR process, y[n], is

defined as 

[ , ] ( [ ] [ ]) [ , ],n m E y n y n m n m m        (14) 

where denotes the complex conjugate, n is the time index 

and m is the time deference. Inserting the NAR process y[n]

given in (13) into the autocorrelation given in (14), yields

*( )

1 0
[ , ]

[ , ] [ ] ( [ ] [ ])

[ ] [ ]  .

p q

ik k
i k

n i m i

n m b n i E y n i y n m

E v n y n m

     (15) 

If m p , then the autocorrelation function of NAR(p,q)

processes is zero. Therefore, we will consider time difference

indices m p . The second term of (15) is zero if  since 

v[n] is white, and equal to the deriving noise variance for m=0.

In general, the NAR parameters are unknown and therefore 

should be estimated. The estimated NAR coefficients  are 

obtained by a method presented in [6]. The estimated noise 

variance

0m

ˆ{ }ik

2
ˆ

v
 is obtained using Maximum Likelihood Estimation

(MLE) under the assumption that v[n] is white Gaussian noise.

Hence for m 0,

2

1 0
ˆ ˆ[ , ] [ ] [ , ] [ ] ,

p q

ik k v
i k

n m b n i n i m i m   (16) 

where [ ]  denotes the Kronecker delta. If y[n] is a stationary

process, then q=0 and . In this case, the autocorrelation

is no longer a function of the time index n, and (16) reduces to 

the well-known Yule-Walker Equations (YWE). However, the 

difference between YWE and this method is that the

autocorrelation is unknown and the NAR parameters were 

estimated at a previous stage.

0[ ] 1b n

Eq. (14) implies that for nonstationary processes one cannot

produce the autocorrelation [ ,n m m]  previous to instant n,

since it is equal to the conjugated value of [ , ]n m which is

practically the future. Therefore, we will decompose (16) into 

two elements and apply (14) on the second element,

1 0

2

1 0

ˆ[ , ] [ ] [ , ]

ˆ ˆ[ ] [ , ] [ ]

qm

ik k
i k

p q

ik k v
i m k

n m b n i n i m i

b n i n m i m m ,

n N p

    (17) 

Eq. (17) is a recursive algorithm for estimating the

autocorrelation from its past elements. In order to obtain the

autocorrelation with negative values of  and for each time

instant, one should estimate the autocorrelations for 

m

0 1 0 m p,  and apply the relation given in

(14). In order to calculate (17), it is further assumed that

[ , ] 0n m  for n<0. Since the process is excited by white noise, 

it is reasonable to initialize the autocorrelation by the deriving

noise variance,
2

ˆ[0, ] [ ] .vm m                         (18) 

       The elements of the nonstationary autocorrelation 

required for the computation of the CTFR given in (12) could be 

calculated using NAR autocorrelation function 

[ ]yyR n

[ , ]n m . The 

functionality of this method lies in the fact that the NAR model

is spread in numerous fields such as speech processing, EEG,

ECG and etc. Furthermore only a single data record of the 

nonstationary signal is needed to obtain the NAR 

autocorrelation. The values of p,q and the basis functions can  be 

determined from a finite set of parameters using model order 

criterion such as the AIC, which was developed in [9]. Thus, the

CTFR using the NAR autocorrelation and an appropriate model

order criterion does not involve an arbitrary selection of 

parameters such as window length or number of basis functions.

4. SIMULATION RESULTS 

For examining the influence of the time-varying autocorrelation 

estimation on the CTFR, a NAR(2,1) process is generated. The 

CTFR with Kayhan autocorrelation and with NAR

autocorrelation of this process are compared to the expected 

NAR spectral estimator [6] that is defined as 
2

2

1 0
[ , ] 1 [ ]exp( 2 ) .

p q

v ik k
i k

P n f b n i j if     (19) 

The NAR process parameters are ,

, where  and 

with . The NAR(2,1) spectral estimator with

exponential basis functions 

10 11 20 0

21 21 21exp( 2 )r j f 21 210.95, 0.4r f
2 0.2v

[ ] exp /kb n j nk N is given by,

22
21 21[ , ] 1 exp( 2 ( ( 2) / 2 2 ))vP n f r j f n N f   (20) 

where 0, , 1n N , and 128N . Fig. 1 presents the CTFR 

with NAR autocorrelation matrix  (Fig. 1a) and with Kayhan
autocorrelation matrix (Fig. 1b). In both cases the
autocorrelations were estimated from the signal using
exponential basis functions with p=2 and q=1. The 
autocorrelations here and in the next example were first 
calculated and then Kayhan autocorrelation is normalized as 
follows,

[ , ] [ , ] max( [ , ]) / max( [ , ])K K NAR Kn m n m n m n m      (21) 
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Fig.1. The CTFR of NAR(2,1) process using NAR 
autocorrelation (a) and Kayhan autocorrelation (b). 

where [ , ]K n m is the Kayhan autocorrelation and [ , ]NAR n m  is

the NAR autocorrelation. The NAR spectrum reaches its 

maximum approximately when 21 / 2 / 4f f n N  and 

21 . This is clearly seen in Fig. 1a. The

CTFR with Kayhan autocorrelation (Fig. 1b) failed to represent

the true nature of the signal with p=2 and q=1. The simulations

shows that by significant increase of the model order (for

example when p=6 and q=32), the CTFR with Kayhan

autocorrelation for the above NAR(2,1) process provide 

satisfactory results.

/ 2 / 4 0.5f f n N

       In the second example, the signal is a sum of two chirp

signals one with decreasing and increasing frequencies

 where , and 

. The process u[n] is white Gaussian noise with

variance 0.05. The amplitude is given by

1 2[ ] [ ]( ) [ ]j n j n
y n A n e e u n 0, , 1n N

128N
2[ ] ( ) /A n n N n N

and . The CTFR of the signal 

with NAR autocorrelation (Fourier basis function with p=12 and 

q=4) and Kayhan autocorrelation (Fourier basis function with 

q=64 and p=12) are shown in Figs. 2a and 2b, respectively. The 

STFT with Kaiser window of length 32 ( =5) is shown in Fig. 

2c, and the WVD is presented in Fig. 2d. The CTFR's, shown in

Figs. 2a and 2b, outperform the STFT and WVD presented in 

Figs. 2c and 2d respectively. The CTFR explores the time

behavior of each chirp with better resolution than the STFT (Fig.

2c) with the same window length. (See a comparison between 

the CTFR and the STFT in [10]). Furthermore, the CTFR 

displays no cross terms, while the WVD cross terms in Fig. 2d

overwhelm the true component of the signal. The number of 

basis functions with Kayhan autocorrelation in comparison to 

the NAR autocorrelation (q=64 versus q=4) is dramatically

higher. It should be noted that in the second example a poor 

CTFR with Kayhan autocorrelation was obtained when the

number of basis functions, q, was less than 32.

1 / 2 / 2 ,n N 2 / 2n N

5. CONCLUSIONS 

In this paper, we showed that the CTFR is an upper bound for

estimating the power of a sinusoid at a given frequency in an 

unknown noise environment. The CTFR suppresses cross terms

and provide better resolution with respect to the conventional 

STFT. The CTFR with NAR autocorrelation does not involve 

arbitrary parameter selection such as window length and number
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Fig. 2. The CTFR of the signal using NAR autocorrelation (a) 
and using Kayhan autocorrelation (b), STFT (c), and WVD (d).

of basis functions. The NAR autocorrelation is obtained by
single data record. If  the nonstationary signal is a  NAR  process 
then a reduced set of parameters is needed for obtaining an
efficient and accurate CTFR.
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