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ABSTRACT

We consider the problem of direction finding for nonstation-
ary signals impinging on an array of sensors. Making use of
a time-frequency representation of the data, we are able to
exploit the non-stationary nature of the source signals. We
employ a generalized Hough transform to estimate the time-
frequency signature of each source. The proposed method
also allows direction finding when there are more sources
than the number of array sensors.

1. INTRODUCTION

Nonstationary signals such as frequency modulated (FM)
and polynomial phase signals (PPS) arise in a number of
fields including sonar, radar and telecommunications. Re-
cently, the application of time-frequency (TF) analysis to
sensor array processing for non-stationary signals has re-
ceived significant attention in the literature. The use of spa-
tial time-frequency distribution (STFD) matrices in particu-
lar has emerged as a natural means for exploiting both the
spatial diversity and TF localization properties of nonsta-
tionary sources impinging on a sensor array [1].

From subspace analysis of STFD matrices [2], it was
shown that performance improvement with respect to tradi-
tional approaches is significant when the sources are closely
spaced and/or the SNR is very low. Further, the best perfor-
mance gain is achieved when separately averaging over the
TF signatures of each source. We therefore seek a means of
identifying the individual TF signatures from a mixture of
closely spaced sources, which does not break down at low
SNR.

One may try to determine the TF signatures nonparam-
etrically, via thresholding of TFDs [3] and subsequently per-
form the direction finding [4]. Such techniques are able to
estimate the combined TF signature of all sources, but not
identify the individual signatures of each source. Discrimi-
nation between TF-signatures based on spatial diversity has
also been proposed in [5, 6]. Such methods clearly break

down when the source signals are closely spaced. Sub-
optimal parametric methods such as the PPT [7] have a con-
stant SNR threshold which is not improved by an increased
number of observations.

The Hough transform of the Wigner-Ville distribution
has been proposed for analysis of multi-component linear
FM signals in [8] and shown to have good performance at
low SNR, due to coherent integration in the TF plane. This
idea was extended for the analysis of non-linear FM signals
in [9] via a generalized Hough transform. In this paper we
investigate the application of the Hough transform to STFDs
for the purpose of direction finding.

In Section 2, we outline the signal model used and in
Section 3 briefly review the idea behind direction finding us-
ing STFDs. Section 4 discusses the proposed direction find-
ing algorithm based on the Hough transform and in Section
5, simulations depicting the performance of the proposed
method are included. Section 6 summarizes the important
conclusions drawn from this work.

2. SIGNAL MODEL

We consider an m-element sensor array observing an instan-
taneous linear mixture of signals emitted from d narrow-
band far-field sources. The vector x(t) ∈ C

m×1 represents
the baseband array output waveforms at time t, which are
corrupted by an additive noise process v(t). The baseband
array output model is

x(t) = As(t) + v(t), (1)

where A ∈ C
m×d is termed the mixing matrix and s(t) ∈

C
d×1 is a (deterministic) vector of the source signals. A

is assumed to be of full column rank and parameterized by
a vector θ ∈ R

d×1 corresponding to the directions of the
source signals with respect to the array broadside. We also
assume that the sources have different localization proper-
ties in the TF plane. The additive noise v(t) is assumed to
be a stationary, spatially and temporally white, zero-mean
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complex random process which is independent of the source
signals and has variance σ2

v .
We consider herein a class of FM signals with constant

amplitude of the form {sk(t) = Ak exp[jφk(t)]}d
k=1 which

have a well defined instantaneous frequency (IF) given by

ωk(t) =
dφk(t)

dt
; k = 1, . . . , d

and thus lend themselves to a TF formulation of the direc-
tion finding problem.

3. STFD MATRICES AND DIRECTION FINDING

We make use of the idea by Amin et al [1] for direction
finding based on a spatial TFD matrix, defined in terms of
the auto- and cross-TFDs of the sensors as

[Dxx(t, ω)]ij = Dxixj
(t, ω;ϕ) (2)

where Dxixj
(t, ω;ϕ) is assumed to be a bilinear TFD of

Cohen’s class, for which the kernel function is ϕ.
The estimate of θ for a subset of d0 ≤ d signals is ob-

tained via subspace decomposition of an averaged STFD
matrix. Assuming snapshots of the array output at sampling
instants {tn}N

n=1 are available, the averaged STFD matrix
is calculated according to

D =
1
N

d0∑

k=1

N∑

n=1

Dxx(tn, ωk(tn)) (3)

where a discrete-time TFD is used in the above. Compared
with the sample covariance matrix of the array output, the
matrix in (3) provides an effective improvement in SNR
by amplification of the source eigenvalues with respect to
the noise eigenvalues [2]. We note that direction finding
based on (3) can be performed with the reduced constraint
d0 < m. The best estimator performance is achieved by us-
ing d0 = 1, and successively estimating the DOAs of each
source.

4. DIRECTION FINDING WITH THE HOUGH
TRANSFORM

The use of (3) requires knowledge of the source signal IFs
{ωk(t)}d

k=1 for each corresponding direction parameter to
be estimated [2]. In order to implement such a scheme with-
out a priori knowledge of the signal IFs, we propose the
use of a generalized Hough transform [9]. This approach
requires us to know a general functional form that is suit-
able for describing the IF, but not the particular parameters
for the signals being observed. By parameterizing the signal
IFs we can translate the problem of estimating {ωk(t)} into
peak detection in a parameter space.

Denoting the parameterized IFs by {ω(t;ψk)}d
k=1, where

ψk is the vector of IF parameters for source k and choosing
d0 = 1 in (3) for best performance, we obtain

Hx(ψk) =
1
N

N∑

n=1

Dxx(tn, ω(tn;ψk)), k = 1, . . . , d

(4)
which we call a spatial time-frequency Hough transform
(STFHT) matrix.

In order to use the Hough transform for estimating
{ψk}d

k=1, we average the auto-sensor TFDs across the array
sensor data. This is known to reduce the effect of noise and
cross-source components in the TF-plane [10]. The Hough
transform of the array averaged TFD is given by

Hx(ψ) =
1

mN

N∑

n=1

m∑

k=1

Dxkxk
(tn, ω(tn;ψ))

=
1
m

m∑

k=1

Hxk
(ψ), (5)

where Hxk
(ψ) denotes the time-frequency Hough trans-

form (TFHT) of the waveform at sensor k. The estimates
{ψ̂k}d

k=1 are obtained from (5) as the values of ψ corre-
sponding to the d largest peaks in Hs(ψ). In the case of an
unknown number of sources, it would be necessary to ap-
propriately threshold Hx(ψ) before applying a peak-search
algorithm. However the details and performance of such a
source number detection scheme will not be discussed here.

Direction of arrival estimation for the signal sk(t) is
conducted by first obtaining estimates ψ̂k from (5) and form-
ing the corresponding STFHT matrix according to (4). A
high resolution second-order direction finding method such
as MUSIC can be applied. We note that obtaining {θ̂k}d

k=1

requires searching for a single peak d times as opposed to
searching for d peaks in, e.g. a conventional MUSIC spec-
trum. By appropriate choice of the IF model, we also have
the possibility of only estimating {θ̂k} for those sources
with, e.g. a strongly linear IF such as chirp signals and ig-
noring others with non-localized TF representations. The
DOA estimation procedure is summarized in Table 1.

If the IFs of the different source signals do not signifi-
cantly overlap, then each peak in the Hough transform iso-
lates the energy of a single signal. The use of the matrices
in (4) then potentially allows direction finding for an arbi-
trary number of source signals, using only two sensors. Of
course, the peak search in the IF parameter space may be-
come too computationally intensive if the number of param-
eters required to represent the IF is large. There are, how-
ever, a number of interesting cases such as low-order poly-
nomial phase, hyperbolic FM and sinusoidal FM, where the
parameter space is of low order. Such signals arise in a
range of applications including radar, sonar, telecommuni-
cations and helicopter recognition [9].
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1. Determine an appropriate parameterization (ψ) for
the signal IF.

2. Compute Hx(ψ), the array averaged TFHT, ac-
cording to (5).

3. Form the estimates {ψ̂k}d
k=1 from the values of ψ

corresponding to the d largest peaks of Hx(ψ).

4. Calculate the STFHT matrix Hx(ψ̂k) for k =
1, . . . , d.

5. Form the DOA estimates {θ̂k}d
k=1 by applying

MUSIC or other sub-space based technique to the
matrices formed in Step 4.

Table 1. DOA estimation algorithm using the Hough trans-
form.

In particular, linear FM or chirp signals, which occur
in a number of array processing applications, are amenable
to a combined TF Hough transform. It has been shown
that optimal detection of chirps can be performed using a
Radon/Hough transform of the Wigner-Ville distribution [11].
Computationally there are also advantages when dealing with
chirp signals. Direct implementation of the chirp TFHT is
O(N3), though a more efficient implementation via time
and frequency dechirping can reduce this to O(2N log 2N)
[12].

5. SIMULATIONS

In the following simulations, we focus on the chirp sig-
nal, whose Hough transform corresponds to taking line in-
tegrals through the TF plane. The signal IFs are given by
{ω(t,ψk) = 2π(ak + bkt)}d

k=1 where the parameter vec-
tor in the TFHT is ψk = [ak, bk]. The SNR for signal k is
defined as A2

k/σ2.
To illustrate the effect of the array averaging, we show

in Figure 1 the Hough transform at a reference sensor and
that averaged across the array. In this example two chirp sig-
nals are impinging on an eight-sensor, uniform linear array
(ULA), each with an SNR of -20 dB and respective DOAs
of −10 and 10 degrees. 1024 snapshots are used and the
TFD is a pseudo Wigner-Ville distribution with odd win-
dow length of 129 samples. Clearly the noise floor over
the parameter space is reduced due to array averaging, and
the two peaks due to the two chirp signals are enhanced.
We note also that due to their oscillatory nature, the cross-
terms are significantly reduced by the integration through

the TF plane when calculating the TFHT. This is in addi-
tion to the reduction of cross-source components achieved
by the array averaging.

In the next example, we show the overall performance in
DOA estimation, for the signal mixture defined previously.
Figure 2 shows the root mean-squared error (RMSE) ob-
tained from averaging 200 Monte Carlo runs, for estimation
of the first source’s DOA, as obtained by the algorithm in
Table 1. The estimator performance is simulated vs SNR
and compared with the case of known signal IF, the conven-
tional root-MUSIC algorithm and the Cramér-Rao Bound
(CRB). We observe that the proposed algorithm performs
as well as the case of known signal IF, for SNR greater than
-20 dB. This shows that estimation of the signal IF is suf-
ficiently accurate at low SNR where TF-MUSIC exhibits a
significant performance gain over conventional MUSIC.

In the third simulation example, we consider the case
of fewer sensors than sources. The same signals previously
used are present, plus a third chirp signal, all with SNR of
-5 dB. The signal DOAs are given by -12, 2 and 15 degrees
respectively and the ULA has only two sensors. Due to the
isolation of individual signal TF signatures by the use of
the Hough transform, we are able to estimate the DOA of
each source individually despite the fact that the system is
under-determined (d > m). MUSIC spectra are plotted in
Figure 3 which illustrate that the three chirp signals are able
to be resolved.

6. CONCLUSIONS

A method for direction finding for a class of nonstationary
signals is proposed based on STFD matrices. Prior knowl-
edge of the source TF signatures is not assumed, but es-
timated according to a parametric model using the Hough
transform. Two important conclusions of the work are as
follows; firstly, the use of the Hough transform provides
performance close to the case of exactly known TF signa-
tures at low SNR, where there is a significant gain in perfor-
mance to be achieved by using STFD direction finding, over
traditional methods. Secondly, the Hough transform allows
estimation of direction for more sources than sensors, in an
automatic way.
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Fig. 1. Example of TFHT before (top) and after (bottom)
the array averaging.
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