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ABSTRACT 

Problem of signal detection, followed by a 

characterization stage is considered in this paper. The 

main difficulties arising in the detection stage are caused 

by noise, which acts in a real environment, and by 

multiple time-frequency (TF) structures of the signal. In 

this paper a detection method based on the adaptive 

grouping of the TF information provided by a Gabor filter 

bank is proposed. A Viterbi-type algorithm is used as a 

tool for grouping of TF components. The results obtained 

for real data prove the capability of the proposed approach 

for accurately detect and characterize signals with a 

complex TF behavior. 

1. INTRODUCTION 

 The problem of detecting signal of unknown 

waveforms has been widely studied in recent years due to 

the numerous applications associated with it. Some 

application fields are: medical signal processing, non-

destructive machinery diagnostic, underwater signal 

processing, etc. In these applications we are interested in 

both the detection of the useful part of signal and its 

characterization. In this case, there are two major 

problems that should be solved. Firstly, the processing 

system must to be able to accurately detect the transient 

parts of the signal. One of the most performant detection 

methods is based on the joint use of the wavelet 

techniques and the higher order statistical measurement 

[1]. For the second problem - signal characterization - it is 

necessary to use a method, which could be able to extract 

the useful information about the processed data, knowing 

that the real environments are generally highly non-

stationary. In this context, the use of the TF methods [2] 

can be a potential solution. This class of methods must be 

able to provide suggestive information about the signal 

structure. Currently, this information is extracted from the 

TF image form. The quality of the TF image strongly 

influences the performances of the following processing 

stages. 

In this work we propose a method based on the Gabor 

filter bank processing which leads to signal processing on 

selected frequency sub-bands. Furthermore, the 

information provided by the filter bank is grouped via 

Viterbi algorithm. The purpose of this operation is to 

ensure the conservation of the TF behavior of the detected 

parts of the signal. According to this task, a new objective 

function is defined. 

The results provided for real data would prove the 

performances of the proposed approach to work in an 

operational context. 

The organization of this paper is as follows. In section 

2, we briefly present the Gabor filter bank structure and its 

application in the detection field. In section 3 we present 

the Viterbi algorithm as a tool for grouping the TF 

information provided by the filter bank. The detection 

method, based on the combination between Gabor filter 

bank and Viterbi algorithm, is described in the section 4. 

Some results, provided for simulated signals, are presented 

in section 5. Section 6 highlights the significance of the 

results and the realistic perspectives.   

   

2. GABOR FILTER BANK - DETECTION 

PERSPECTIVE

 A signal may contain numerous TF components with 

complex structure. An efficient detection stage must take 

into account this frequency diversity. Moreover, the 

detection step is usually done to avoid heavy processing 

on complex signals with high sampling rate. To achieve 

this purpose, we propose to use a simple filter bank and a 

grouping strategy to separate the different components by 

detecting the regions of interests (RoI). From these RoIs, 

we could obtain denoised signals at lower sample rate, on 

which more complex processing can be done.  

To cover the whole frequency band of the signal, we 

use Nf filters with equidistant central frequencies fk. Gabor 

atoms were chosen for the filter bank decomposition. 

Namely, the Gabor function exhibits optimal joint TF 

support in the TF plane leading to the optimal separation 

capability between close signal components. The non-

causal impulse response of the Gabor atom is given by 
2 2 2 2/ 2( ) ( )k ki f t i f tt

kh t Ae e h t e  where  and fk are 

respectively the variance parameter of the Gaussian 

windows th  and the central frequency of the atom. The 

Gabor atom time and frequency supports are defined by 

(1). 
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 The product of time and frequency supports achieves 

minimum given by the uncertainty principle 1/t f .

The pass band of each filter is defined by 1/ 2 2BP

and must be chosen, accordingly to Nf, to cover the 

necessary frequency band. A measure of the frequency 

coverage can be given by 
2

1

fN

k

p

G H , as defined 

in [7], where Hk( ) is the Fourier transform of hk(t). A plot 

of this function is depicted in figure 1. 

Figure 1. Filter bank and frequency coverage

Different kind of processing can be carried out on 

filters outputs for detection. One of the easiest is to 

perform a block processing using statistics in order to 

detect the bands containing energy. The neighbouring 

bands over a threshold could then be grouped to form 
more accurate filters in the time domain. Half of the 

detection is then done and the remaining filters output 

with less energy can be neglected. 

With this energetic group of filters, the time support 

can also be estimated using higher-order statistics, with 

kurtosis for example [1]. By selecting the estimated time 

support of the grouped filter outputs, the RoIs selection is 

done and the component extracted. 
 This grouping strategy involves several drawbacks. 

Firstly, we cannot separate close components whose 

instantaneous frequency (IF) is varying in time. Secondly, 
the detected TF regions of interest, using this kind of 

algorithm, will be rectangular boxes. It is then easy to see 

that a component can hide another one both in time and 

frequency. 

To improve the detector and solve this kind of 

problem, an adaptative implementation based on the 

Viterbi-like algorithm could be done. At each sample, the 

output of the filters will be processed to adapt the 

grouping of the filters. 

3. VITERBI ALGORITHM 

 The Viterbi algorithm is proposed for the decoding of 

convolutional codes. It has itself very interesting 

background since Viterbi proposed it only for educational 

purposes. Other authors later proved its significant 

practical importance. The Viterbi algorithm could be 

assumed as dynamical programming search problem. In 
wider context it can be considered as a tool for detection 

of hidden states in signals. Extensions of the Viterbi 

algorithm are used in numerous fields, like for example in 
image processing for edge following. Its main advantage 

over other related methods is simple recursive realization 

that reduces search space in the case of very complicated 

and nonlinear problems. Recently, the Viterbi algorithm 

was applied in the TF analysis as a tool for the IF 

estimation.  

 The Viterbi algorithm based IF estimator is defined as 

a path through the TF plane which minimizes the sum of 
path penalty functions:  

1

( )
1 1

ˆ ( ) arg min ( ( ), ( )) ( ( , ( ))
N N

k t
m m

t k t k t t TF t k t
K

    (2) 

where it is assumed that the IF function could pass only 

through discrete set of frequency bins K, t is sampling 

rate and N is number of considered instants, the TF(t, ) is 

considered TF representation. The path penalty functions 

are selected to meet the following criterions: IF function 

passes trough the high magnitude points in the TF plane 

(function ()); IF is relatively slow varying function 

(function ()). Particular selection of path penalty 

functions and algorithm realization is discussed in [3].  

 The Viterbi algorithm can be extended as a general 

tool for grouping together parts of the TF plane belonging 

to the same signal component. Some adaptations must be 

done to deal with the multicomponent case and to tackle 

the problem of detecting the beginning and the end of each 

component. Details on the path penalty function 

modification for the considered application are presented 

in the following section. 

4. DETECTOR BASED ON VITERBI GROUPING 

OF THE FILTER BANK INFORMATION 

 The algorithm described in [3] is based on the pseudo 

Wigner-Ville representation and deals with the 

monocomponent case. It supposes that there is an IF to 

estimate from the beginning to the end of the signal. For a 

multicomponent detection purpose, we must get rid of 

these assumptions and adapt this algorithm to the Gabor 

filter bank. As illustrated in figure 2, the aim is to identify 

the group of filters containing a TF evolving signal. In [3], 

where only one component has to be estimated, all the 

points with the highest magnitude values of the TF 

representation, at one instant were candidate, for the IF 

estimate. To deal with the multicomponent case, another 

way is chosen to select the candidates. Namely, at instant 

i, we will estimate all the maxima, over a threshold, of the 
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filter output modules as described in the figure 2. This set 

will be denoted as Ci.  The bandwidths, related to the 

frequency spreading of the components, will be associated 

to these maxima. The aim of the detection algorithm is 

then to associate all the maxima belonging to a 

component. Knowing the bandwidth associated with each 

maximum, i.e. the number of filters concerned for a 

component at one instant, this component will be well 

localized in the TF plane. The associated RoI is then well 

determined and the signal can be extracted. 

t

f f

Energy

threshold

Candidates for

path extensionbandwidth

iC

Figure 2. Maxima detection 

Threshold estimation

 Depending on the signal composition at each instant, 

the threshold must be adapted. The energy PWn(i) is 

computed recursively over a window, of length Nw+1, at 

the output of the filter n, giving an average energy 

repartition of the signal in the frequency bands at one 

instant (3).  

22/

2/
,)1/(1

Nwi

Nwij njn tTFNwiPW         (3) 

 We consider this energy repartition as a signal 

si(n)=PWn(i) and we compute its probability density 

function (PDF). The noise level value should appear as the 

smallest mode and the most energetic one.  Therefore, in 

order to detect it, we compute the maximum of the PDF. 

As the threshold is computed relatively to the noise level, 

the energy difference between signals to be detected has 

almost no influence. 

Cost functions and constraints

 In [3], it was supposed that the IF was slowly varying. 

This assumption remains valid since a lot of signals have a 

continuous frequency law. The second cost function was 

defined for the monocomponent signal case. At one 

instant, all the TF values were sorted and a small penalty 

was associated for the highest magnitude points and a high 

penalty for the smallest ones. Alternatively, we will 

implement a penalty function based on the continuity of 

the signal power. Namely, we expect that signal power is 

approximately a continue function, i.e., the component 

amplitude is similar in successive instants. In this case, the 

path penalty function () is time dependent and could be 

computed as: 

|| ( , ( )) | | ( , ( )) ||
( ; ( ), ( ))

|| ( , ( )) | | ( , ( )) ||

TF t k t TF t t k t
t k t k t c

TF t k t TF t t k t
   (4) 

where c is a constant value bounded to the influence of 

this cost function in the calculation of the overall penalty. 

This function gives a measure of the relative variation of 

the amplitude between instant t and t+ .

 The beginning and the end of the components can be 

detected by imposing some constraints to the cost 

functions. It is decided to stop the continuation of a 

component when the new penalty increment becomes 

much higher than its average value on the path. In 

addition, we use the assumption that all the detected 

maxima correspond to the signal. Therefore, if a 

maximum has not been used, it will be considered as the 

beginning of a new component. At the end of the detection 

process, some noise will be gathered and detected as a 

signal. But it is easy to classify the resulting signals 

according to their length and energy. All the post detection 

processes should then be applied to relevant signals first. 

Description of the algorithm :

L : length of the signal 

f(c) : penalty function of the path c. 

K : factor for penalty constraint. 

i : optimal paths from start points to Ci points. 

1) Initialisation 

set Li ,10  as 
0irC  and 

0i
C

Therefore, 0i  is the first non empty maxima set 

index. We then define 
0ii ,

00 ii C

10ii

2)
1, , ipi kpkE ,

iCp

piE ,  is the set of new path starting from 1i

i
Ec

i Cpcf
pi

,minarg
,

3) iCp , define pc  as the optimal path leading 

to p  and pc the same path without p. 

note that 1ipc

define the average penalty

p

p

clength

cf
A

and the penalty increment pp cfcfI

if AKI .  then 

retain pc  as a path 

pii c
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4) if any p  of iC  remains unused, set p as the start 

of a new path:  

pii

5) if Li  then retain paths of i

else 1ii  and return to step 2 
end 

6) Paths are saved 
RoIs are defined by the paths and the energy 
spreading associated with each point of the 
paths. 

A light version of the algorithm is presented here for 

comprehension. With slight modifications, we can tackle 

the problem of crossing components overlapping in time 

and frequency by joining them for example. It is also easy 

to refine detection by adding a priori knowledge to the 

detector.

5. RESULTS 

As an example, the signal depicted on figure 3, is 

processed. It is composed of four components: two 

constant frequency pulses and two components with 

parabolic IF laws which are imbricated. We apply an 

additive white Gaussian noise to the signal for its SNR to 

be about 0dB. We used Nf =128 filters. This is the typical 

example which would make the basic detector (section 2) 

fail. When plotting the module of the filter outputs, we 

obtain a kind of short time Fourier transform 

representation, first part of figure 4. On the second part, 

we show the result of path detection. The four paths have 

been successfully detected. 

Figure 3. Test signal, SNR=0dB 

(a) (b)

Figure 4. STFT (a) and detected paths (b) 

Knowing the paths and the energy spreading of each of 

its points, it is then possible to give a complete description 

of the RoIs of the example signal. The detected RoIs are 

plotted below on figure 5. These data can be used for 

direct extraction of the detected signals from the filterbank 

outputs.

Figure 5. Detected RoIs 

6. CONCLUSIONS 

In this paper, we presented, a detection algorithm using 

Gabor filterbank and a Viterbi based grouping algorithm 

in order to track the TF components. As it is proved by the 

experimental results, the RoIs detected by the proposed 

method provide complete and satisfactory information 

about TF behavior of the considered signals. 

Consequently, due to its good readability, it may be 

successfully used for a further feature extraction 

algorithm. Moreover, this algorithm can be implemented 

in a recursive manner allowing it to be used in real time 

processing systems. In further works, we intend to use this 

algorithm as a feature extraction method in the context of 

underwater transient signal classification and electronic 

warfare. 
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