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ABSTRACT

This article introduces a robust adaptive Lomb 

periodogram (RALP) for time-frequency (TF) analysis of time 

series with sinusoidal and transient components, which are 

possibly non-uniformly sampled.  It extends the conventional 

Lomb spectrum by windowing the observation data and 

adaptively selects the window lengths by the intersection of 

confidence intervals (ICI) rule.  The influence of transient 

components to conventional time-frequency representation can 

be moderated using M-estimation of robust statistics.  Instead of 

treating the transient components as impulsive noise and 

removing them, the proposed RALP TF distribution yields 

separately a time domain representation of the transient 

components and a conventional TF representation of the 

sinusoidal components, which greatly improves the visualization 

and detection of these components.  Simulation results show that 

the proposed RALP differentiates the two kinds of components 

well, and offers better time and frequency resolutions than the 

conventional Lomb periodogram.

1. INTRODUCTION 

Time-frequency distributions are useful tools for time-

frequency analysis and visualization of signals.  Two 

fundamental problems in time-frequency representations are:  1) 

the bias and variance trade-off problem and 2) the suppression of 

the adverse effects of transient components such as outliers.   

The first problem is concerned with the choice of window 

length in the TF distribution.  For slowly varying sinusoidal 

components, a long time window is desirable because more 

samples can be used to determine their amplitudes.  The reduced 

variances of the spectral coefficients give a better frequency 

resolution at the expense of a lower time resolution.  On the 

contrary, for fast varying components, a small window is 

preferred in order to reduce the bias in estimation.  As a result, a 

better time resolution is achieved for tracking these fast varying 

components at the cost of a lower frequency resolution.  The 

first problem is usually addressed by adaptively choosing the 

window length using the intersection of confidence intervals 

(ICI) rule. Katkovnik et al [5] developed such algorithms and 

had successfully applied it to Wigner distribution [6] and M-

periodogram [7].   

The second problem was first observed and addressed in [4], 

where a robust M-periodogram using M-estimation was 

proposed to combat the adverse effect of outliers in the 

conventional periodogram.  The basic idea is to employ a non-

quadratic residual loss function when fitting the sinusoids to the 

observations, instead of using the square function in the 

conventional method.  The latter is known to have a very high 

sensitive to outliers.  A robust Wigner distribution based on a 

similar concept was proposed in [3].  One important limitation of 

this approach is that transient components are treated as outliers 

and are suppressed.  However, in many applications, transient 

components might represent useful information and they should 

not be removed entirely.   

In this paper, we will employ the Lomb periodogram as our 

basic time-frequency representation [1, 2].  Its basic idea is to 

estimate the amplitude of a given sinusoid with a certain 

frequency  by least squares fitting the sinusoids to the 

observed non-uniform data points.  An important advantage of 

the Lomb periodogram is that it can be applied to non-uniformly 

spaced data. One significant drawback of the conventional Lomb 

periodogram is that it estimates the sinusoidal components using 

the entire data set, which is unsuitable in time-varying 

environment.  To over this problem, a windowed version of the 

Lomb periodogram was proposed recently in [9] by the authors.  

Moreover, the ICI rule is employed to select optimal windows in 

the time-frequency domain.  Simulation results showed that 

better bias-variance trade-off could be achieved as compared 

with the conventional Lomb periodogram.  Here, we extend the 

work in [9] to address the second problem mentioned above by 

introducing M-estimation to the adaptive Lomb periodogram.   

This is motivated by the M-periodogram in [4] for uniform data 

with two important differences, apart from being able to handle 

non-uniform spaced observations.  First of all, the proposed 

RALP employs time-frequency adaptive smoothing in order to 

achieve a better bias-variance trade-off.  Secondly, the transient 

components are not treated simply as noise and removed.  

Instead, they are suppressed using M-estimation so that we can 

obtain an ALP for the sinusoidal components alone.  By 

recovering the sinusoidal components, the transients in the time 

domain can be isolated, giving a TF- and a time-domain 

representation, respectively, for the sinusoidal and transient 

contents of the non-uniform spaced observations. 

 The paper is organized as follows: in Section 2, the robust 

windowed Lomb periodogram is proposed.  The adaptive Lomb 

periodogram and window selection are introduced in Section 3.  

Section 4 is devoted to the estimation of the sinusoidal and 

transient components using the robust adaptive Lomb spectrum.  

Simulation results and comparisons are described in Section 5.  

Finally, conclusions are drawn in Section 6.  

2. ROBUST WINDOWED LOMB PERIODOGRAM

Given a set of N  non-uniform discrete–time samples tx  of a 

signal )(tm .  The Lomb periodogram )(P  at a frequency  is 

computed from the observations using a least-squares fit of tx

by sinusoids with the given frequency: 

tt etctcx )sin()()cos()( 21 , (1)
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where the additional components te  is assumed to be an 

independent and identically distributed (i.i.d.) Gaussian white 

noise [4, 8].  The parameter vector )]'(),([)( 21 ccC  can 

be solved by minimizing the quadratic loss function: 

t t
C

eC
2

minarg)(ˆ , which yields a least-squares problem. 

The power spectrum can then be computed from the estimation 

of )(C  as 2||)(ˆ||)( CP .  By taking into account the time 

shift  of the sinusoids, Lomb [1] and Scargle [2] suggested the 

following definition of Lomb periodogram: 
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where Nxx
t tt /)(  is introduced to make the observations 

zero mean, and )1()( 22 Nxx
t tt  is a normalization 

constant.  The constant  is given by 

})2cos({)2sin()2tan(
tt

tt .

In order to track time-varying signals and produce a time-

frequency Lomb spectrum, a window )(tw , which is centered at 

time t , is usually introduced [9] so that the Lomb periodogram 

of the windowed data ttwt wxx ,  at a given time instant t  is 

computed.  It gives a windowed Lomb periodogram (or more 

precisely, a TF distribution) ),(tP  of the signal at different 

time instants t .  This yields: 
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where wtx ,  and t  are respectively the mean value and the 

standard deviation of the data in the window tw , and t  is the 

offset in the window tw  at time t .

Due to the use of least-squares criterion in the fitting process, 

transient components, which appear as outliers to the model, will 

significantly affect the periodogram (to be illustrated later in the 

simulation section). To moderate this adverse effect of the 

transient components, the M-estimation is employed where the 

loss function is modified to 
t t

C
eC )(minarg)(ˆ , and 

)(  is an M-estimate function. Here, we use the traditional 

Huber function to de-emphasize the “outliers”: 
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where  is a threshold used to “reject the outliers”.  Other 

functions such as the Hampel three parts red-descending 

function can also be used. By setting the derivatives of  

t teE )(  with respect to )(Ĉ  to be zero, we obtain the 

following recursive algorithm for computing the robust Lomb 

periodogram based on Iterated Weighted Least Squares (IWLS): 

1. Calculate a starting value for )(ˆ
0C  using least-squares 

algorithm [8]: 
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2. At the k -th iteration, compute the estimation error of the 

least-squares fitting: 
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3. Calculate the updated estimate of )(ˆ
kC  by a weighted 

least-squares: 
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where )),(/)),(((),( tetetq kkk  is the weighting 

function, and 
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The threshold  in (8) is used to restrain the outliers 

(transient components) detected from the estimation error ke ,

and it can be adaptively updated as 
kek , where 

ke

is the standard deviation of the “impulse-free” estimation 

error ke  [10]. The parameter  can be chosen as 1.2817, 

1.96, 2.576, or 3.091 according to the intensity of outliers.  

So we can see that when there is a large error ),( tek  at 

time t , the data tt xx  will be given a small weight at the 

next least-squares iteration to moderate the adverse influence 

of outliers (transient components) at time t .

4. Use the updated )(ˆ
kC  to calculate the estimation error 

),(1 tek  and repeat the process until converge. 

5. The robust Lomb periodogram 
)(ˆ
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Simulation results showed that the algorithm usually 

converges in 5~3k  iterations and never exceeded 10. 

3. ADAPTIVE WINDOW SELECTION 

The selection of window length is crucial to the time-

frequency resolution of the Lomb TF distribution ),(tP .

Motivated by the novel bandwidth selection rule in [5, 6, 7], we 

propose to use the ICI rule for determining the window lengths 

of the adaptive Lomb periodogram in the time-frequency domain.  

Suppose that we are given a set of finite window sizes in 

ascending order of magnitude: }{ 21 Kk hhhhH . For 
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each window size kh , we will obtain a Lomb periodogram 

);,( khtP .  The variance, )(Var , and the bias, )(bias , of 

these Lomb periodograms are functions of the time window kh ,

so is the mean square error ( MSE ), which is given by: 

)];,([)];,([);,( 2

kkk htPbiashtPVarhtMSE . (10)

The variance and bias are respectively decreasing and 

increasing functions of the window size kh .  Therefore, there 

exists an optimal window such that the two terms are equal and 

);,( khtMSE  is minimized.  The ICI rule will examine a 

sequence of confidence intervals of the estimates );,( khtP  to 

determine the optimal window lengths.  By using an adaptive 

window for each sinusoid and at each time instant t , better bias 

and variance trade-off can be achieved.   The optimal window 

size array of the whole time-frequency domain is ),(th
k

 and 

the optimal Lomb periodogram is );,(
k

htP .  More detail of 

the algorithm can be found in [9].  For more information of the 

ICI rule, see [5, 6, 7].  Combining the adaptive window selection 

method with robust periodogram in Section 2, we will get the 

final robust adaptive Lomb periodogram (RALP). 

4. SINUSOIDAL AND TRANSIENT COMPONENTS 

ESTIMATION

Lomb periodogram was designed to compute the power 

spectrum. Hence, the phase information, which is essential to the 

reconstruction of the time series, is discarded.  To estimate the 

transient components, however, we need to find the phase 

information to reconstruct the sinusoidal components from the 

robust windowed Lomb spectrum.  Although we can recover the 

data from )(Ĉ in (7), we still want to use some fast algorithm, 

such as the Inverse Fast Fourier transform (IFFT). To this end, 

we define from (2) the Lomb spectrum as follows: 
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where 1j .  Mathias et al. [8] had proved that the time shift 

contains the phase information and does not affect the 

amplitudes.  So, we have 
2

2
)(

1
)( LombXP , where 2  is 

the variance of observation used as a normalization factor.  

Because 2)(cos2 Nt
t

, 2)(sin 2 Nt
t

 [1], we have: 

N

txxjtxx
X t ttt tt
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where 
t ttt tt txxjtxx )sin()()cos()(  has the 

physical meaning of Discrete-Time Fourier transform of 

)( tt xx . So, by applying IFFT to )(LombXN , the original 

observation can be reconstructed approximately.  The same idea 

can be applied to the robust adaptive Lomb 

periodogram/spectrum in Section 3, only the sinusoidal 

components are recovered and the transient components can be 

detected from the difference between the reconstructed and the 

observed data.  Thus, a TF- and a time-domain representations, 

respectively, for the sinusoidal and transient components of the 

non-uniform spaced observations are obtained. 

5. SIMULATION RESULTS 

Example 1: Uniformly Sampled Data 

A sinusoidal component )(tm  with an instantaneous 

frequency of 5.0)50(arcsin08.0)( tt  is considered.  

The observed data tx  are uniformly sampled at 1002,1t ,

and are assumed to be corrupted by additive Gaussian noise with 

a SNR of 20 dB.  Two transient components with variance 200 

are added at 30t  and 80t  for the sake of visualization.  

The windows lengths considered are 17, 33, 65, and 129.  Fig.1 

shows the comparison of conventional windowed Lomb 

periodogram (based on least-squares) and robust windowed 

Lomb periodogram (based on M-estimation) with fixed window 

lengths.  We can see that when the window length is small, the 

time resolution is high but the frequency resolution is low.  As a 

result, the transient components have a larger effect when the 

window is small.   Robust M-estimation helps to moderate the 

adverse effect of the transient components, but the time-

frequency resolution is limited by the fixed window size.  Figure 

2 shows the results for the proposed RALP and the ALP in [9].  

The time-frequency resolution is significantly improved over the 

fixed window case.  Further, the adverse effect of the transient 

components is effectively suppressed in the RALP.  Fig.3 shows 

the reconstructed results for the RALP. The transient 

components, which are obtained from the difference of the 

original and the reconstructed data, are satisfactorily isolated, 

illustrating the effectiveness of the proposed algorithm. 

Example 2: Non-uniformly Sampled Data

We now consider a sinusoidal signal )(tm  with an 

instantaneous frequency )50(arcsin04.0)( tt . tx

are obtained from 100 non-uniform samples of )(tm  randomly 

chosen between time 1~100 with the same additive noise as 

example 1.   Other parameter settings are the same as example 1.  

Fig.4 shows the results for the RALP.  Compared with Example 

1 (uniform sampled data), we notice the following: 

1. Because the average time interval is 1 in tx , the Nyquist 

frequency should be 0.5. However, because of non-uniform 

sampling, the Lomb periodogram can detect frequency 

components larger than the Nyquist frequency 0.5. 

2. The non-uniform case has larger noise variance and more 

“frequency leakage”.  Orientation analysis and directional 

smoothing are effective to remove these undesirable 

components [9]. 

6. CONCLUSION 

A new RALP spectrum for time-frequency analysis of time 

series with both sinusoidal and transient components is 

presented in this paper.  The conventional Lomb spectrum is 

extended by windowing the observation data and the window 

lengths are adaptively selected by the ICI rule.  Transient 

components are moderated using M-estimation of robust 

statistics to restrain their influence to time-frequency 

representation of sinusoidal components.  Experiment results 
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show that our proposed RALP time-frequency distribution can 

yield separately a time-domain representation of the transient 

components and a time-frequency representation of the 

sinusoidal components, which offers better time and frequency 

resolutions than the conventional Lomb periodogram.  
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Fig. 1: conventional windowed Lomb periodogram with 

fixed window lengths (a) h=17, (b) h=129;  

robust windowed Lomb periodogram with fixed window 

lengths (c) h=17, (d) h=129. 

Fig. 2: (a) conventional adaptive Lomb periodogram, (b) 

conventional adaptive time window lengths, (c) robust 

adaptive Lomb periodogram, (d) robust adaptive time 

window lengths. 

Fig. 3: (a) original uniform sampled observation data (dotted 

line) and reconstructed sinusoidal components from robust 

adaptive Lomb spectrum (solid line), (b) transient 

components detection. 

Fig. 4: (a) robust Lomb periodogram with adaptive time 

window, (non-uniform data), (b) robust Lomb periodogram 

after orientation analysis and directional smoothing.

IV - 496

➡ ➠


