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ABSTRACT

Empirical Mode Decomposition (EMD) provides a new method
for analyzing signals from a nonlinear viewpoint. EMD is de-
fined by an algorithm requiring experimental investigation instead
of rigorous mathematical analysis. We show that EMD yields its
own interpretation of combinations of pure tones. We present the
problem of mode mixing and give a solution involving a masking
signal. The masking signal method also allows EMD to be used
to separate components that are similar in frequency that would be
inseparable with standard EMD techniques.

1. INTRODUCTION

Empirical Mode Decomposition(EMD), introduced by Huang [1],
is a method for decomposing nonlinear, multicomponent signals.
The components resulting from EMD, called Intrinsic Mode Func-
tions (IMFs), each admit an unambiguous definition of instanta-
neous frequency and amplitude through the Hilbert transform. As
discussed in [2, 3], EMD is defined by the algorithm and has no
analytical formulation. Hence, our understanding of EMD comes
from experimental rather than analytical results [2]. In this pa-
per we discuss the problem of intermittency and a new method for
dealing with mode mixing. We also discuss the issue of amplitude
modulations from pure tones and the implications in evaluating the
effectiveness of EMD.

2. EMPIRICAL MODE DECOMPOSITION

By definition an Intrinsic Mode Function (IMF) satisfies two con-
ditions

1. the number of extrema and the number of zero crossings
may differ by no more than one, and

2. the local average is zero

where the local average is defined by the average of the maximum
and minimum envelopes discussed in the following section. These
properties of IMFs allow for instantaneous frequency and ampli-
tude to be defined unambiguously.

2.1. The Sifting Process

In order to obtain the separate components called IMFs, we per-
form a process call sifting. The goal of sifting is to subtract away
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the large-scale features of the signal repeatedly until only the fine-
scale features remain. A signal x(t) is thus divided into the fine-
scale detail, d(t), and the residual, m(t), so x(t) = m(t) + d(t).
This detail becomes the first IMF and the sifting process is re-
peated on the residual, m(t) = x(t) − d(t).

The sifting process requires that a local average of the function
be defined. If we knew the components a priori we would naturally
define the local average to be the lowest frequency component.
Since the goal of EMD is to discover these components, we must
approximate the local average of the signal. Huang’s solution to
finding a local average creates maximum and minimum envelopes
around the signal using natural cubic splines through the respective
local extrema. The local average is approximated as the mean of
the two envelopes.

The first IMF, y1(t), of a signal, x(t), is found by iterating
through the following loop.

1. Find the local extrema of x(t).

2. Find the maximum envelope e+(t) of x(t) by passing a
natural cubic spline through the local maxima. Similarly
find the minimum envelope e−(t) with the local minima.

3. Compute an approximation to the local average, m(t) =
(e+(t) + e−(t))/2.

4. Find the proto-mode function zi(t) = x(t) − m(t)

5. Check whether zi(t) is an IMF. If zi(t) is not an IMF, repeat
the loop on zi(t). If zi(t) is an IMF then set y1(t) = zi(t).

The name, sifting, indicates the process of removing the lowest
frequency information until only the highest frequency remains.
The sifting procedure performed on x(t) can then be performed
on the residual x1(t) = x(t)−y1(t) to obtain x2(t) and y2(t) and
repeated until

x(n) =

k∑
i=1

xi(t). (1)

2.2. Instantaneous Frequency

The Hilbert transform, v(t), of a signal u(t) of the continuous
variable t is

v(t) =
1

π
P

∫ ∞

−∞

u(η)

η − t
dη (2)

where P indicates the Cauchy Principle Value integral.
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An instantaneous frequency and amplitude can be obtained for
every value of t. Following [4] the instantaneous amplitude is de-
fined as

A(t) =
√

u(t)2 + v(t)2 (3)

and the instantaneous phase can be defined as

ϕ(t) = arctan
v(t)

u(t)
. (4)

Instantaneous frequency, f(t), can be derived from phase by

ϕ̇(t) = ω(t) = 2πf(t) (5)

which simplifies to

ω(t) =
d

dt
(arctan

v(t)

u(t)
) =

u(t)v̇(t) − v(t)u̇(t)

u(t)2 + v(t)2
. (6)

The instantaneous frequency and amplitude serve as an alternative
to the power spectrum for describing the frequencies that make up
a signal.

The discrete Hilbert transform (DHT), v(i), of a signal u(i) is
given by v(i) =

∑N−1
m=0 h(i − m)u(m) where N is even and

h(i) =
2

N
sin2(

πi

2
) cot(

πi

N
). (7)

Using a centered difference approximation to the time derivatives
in (6) we can approximate

f̃(i) =
u(i)(v(i + 1) − v(i − 1)) − v(i)(u(i + 1) − u(i − 1))

2ts(u(i)2 + v(i)2)
(8)

where ts is the sampling time. Due to the centered difference op-
erator, the frequency f̃(i) must be corrected by

f(i) = fs arcsin(f̃/fs) (9)

where fs is the sampling rate.
Applying the Hilbert transform directly to a multicomponent

signal provides values of A(i) and f(i) which are unusable for
describing the signal. The idea of instantaneous frequency and
amplitude does not make sense when a signal consists of multiple
components at different frequencies. For this reason, Empirical
Mode Decomposition and the Hilbert Transform work very well
together by first decomposing a signal into single-frequency com-
ponents and then finding the instantaneous frequency and ampli-
tude of each component.

2.3. Intermittency

As noted in [5] and [6], intermittency is a major obstacle to the
use of EMD on many signals. Intermittency for example occurs in
turbulent flow or in any signal that is constantly changing such as
speech. In this case we refer to intermittency as a component at a
particular time scale either coming into existence or disappearing
from a signal entirely. Since EMD locally pulls out the highest
frequency component as the current IMF, intermittency in a signal
means that the frequency tracked by a particular IMF will jump as
the intermittent component begins or ends as in figure 2. The situ-
ation when an IMF has components of different frequencies due to
intermittency is called mode mixing. A solution to mode mixing
is proposed in [5] in which a change in the choice of extrema for
the envelopes limits the scale over which the sifting process allows
a component to pass.
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Fig. 1. EMD is performed on the combination of pure tones
x(t) = sin(2πf1t) + sin(2πf2t) where f1 = 1776 Hz and f2,
displayed along the horizontal axes, varies from 50 Hz to 4000 Hz
by 6 Hz increments. The top right and top left graphs show the
frequencies and amplitudes of the IMFs. The bottom left shows
the variance of the amplitude. A greater variance indicates more
modulation. The bottom right shows the error between the 1st IMF
and the original signal. As f2 approaches f1, EMD interprets the
entire signal as a single modulated component.

3. PURE TONES AND MODULATION

When considering the performance of EMD on a combination of
pure tones, it is important to note that a sum of pure sine waves
can often be rewritten as an amplitude modulated (AM) sine wave.
The performance of EMD on pairs of pure tones is discussed in
[2]. When two sine waves are added together as

x(t) = a1 sin(2πf1t) + a2 sin(2πf2t), (10)

EMD will decompose the signal with some error due to error in
the extrema due to sampling. In [2], it is noted that when 0.5 <
f1/f2 < 2 the error between the first IMF and the high frequency
component increases dramatically. Calling this error is a bit mis-
leading. Saying that EMD does not perform well because it finds
AM tones is as valid as saying that a Discrete Fourier Transform
(DFT) does not perform well on a modulated tone because it re-
turns a sum of pure tones. Without a context there is no correct
answer as to which interpretation is right. In many problems in-
volving natural phenomena, the modulated interpretation may be
the most appropriate, so EMD is more likely to find components
that are linked to the underlying process generating the signal.

The question at hand is how EMD interprets combinations of
sine waves. In certain cases it is natural to write the sum of two sine
waves as an amplitude modulated sine wave. The most basic of
trigonometric identities bears this out as sin(2πxt)+sin(2πyt) =
2 sin(π(x+ y)) cos(π(x− y)). If x = 650 and y = 600, then the
sum appears as a 625 Hz signal which is amplitude modulated by
a 25 Hz sine wave. The AM interpretation is clearly the most nat-
ural. If, on the other hand, x = 50 and y = 600 then the obvious
interpretation is to consider the signal to be two separate unmodu-
lated components. EMD interprets both of these signals appropri-
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Fig. 2. The signal x(t) consists of a 1776 Hz sine wave that is off
between t = 0.033 and t = 0.067 and a 1000 Hz sine wave. The
middle two signals are the IMFs computed with standard EMD.
The bottom IMF of the middle pair shows mode mixing as the
frequency jumps from 1776 Hz to 1000 Hz when the higher fre-
quency signal is not present. The bottom two signals are IMFs
computed with masking signals of 2100 Hz for the first IMF and
1200 Hz for the second IMF. Note how the bottom two IMFs do
not show mode mixing. The two IMFs on the bottom are nearly
identical to the original two components that form x(t).

ately. At some point, as x varies between 50 and 650, there is a
transition between interpreting the signal as two separate tones and
as a modulated tone. In order to use EMD, the transition between
the two cases must be understood. This transition may appear to
be a shortcoming of EMD, but another viewpoint is that EMD may
provide a reasonable way to interpret such combinations of sine
waves. We examine the case in (10). Figure 1 shows how EMD
interprets the sum in (10) with f1 = 1776, a1 = a2 = 1 and a
sampling rate of 44,100 Hz. The second frequency is varied from
50 Hz to 4000 Hz. When f2 is small or large, EMD interprets the
signal as two components. When 0.5 < f1/f2 < 2 the first IMF is
a modulated signal that contains the higher frequency component
and a portion of the lower frequency component.

4. A SOLUTION TO MODE MIXING

Here we present a novel solution to the problem of mode mixing.
The basic idea is to insert a masking signal, in this case a single
sine tone, that prevents lower frequency components from being
included in the IMF. Since the masking signal is known, it can be
removed from the IMF obtained through EMD in the following
manner.

1. Construct a masking signal, s(n), from the frequency infor-
mation of the original data, x(n)

2. Perform EMD on x+(n) = x(n) + s(n) to obtain the IMF
z+(n). Similarly obtain z−(n) from x−(n) = x(n) −
s(n).

3. Define the IMF as z(n) = (z+(n) + z−(n))/2.

This algorithm deserves a bit of an explanation. Suppose that
the signal x(n) contains intermittent components of two frequen-
cies fa and fb with fa > fb. Wherever fa is present in the signal,
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Fig. 3. The error between the first IMF and the actual high fre-
quency component with various masking frequencies. The signals
tested are of the form in (10) with f1 = 3060 and f2 = 2050 with
unit amplitude. The horizontal axis displays the amplitudes used
in the masking signal. The error is minimized around a0 = 1.6.

it will be extracted in z− and z+ as long as the masking signal is
chosen appropriately. The averaging step will cancel out the posi-
tive and negative instances of the masking signal leaving only the
portion of the signal at fa. Where fa is not present only the mask-
ing signal is extracted. In this case z(t) = (s(t) − s(t))/2 = 0.

4.1. Choosing a masking signal

In order to pick an appropriate masking signal, the frequency con-
tent of a signal must be examined. One possibility is taking a DFT
and examining peaks of the spectrum. A difficulty in this approach
is that EMD is biased to pick AM signals, so peaks in the spectrum
do not necessarily correspond to individual IMFs. The DFT and
EMD are very different in their approaches, so coupling the two
may be practical but is certainly discordant.

Another approach to constructing a masking signal, that taken
in this paper, uses the first unaltered IMF, y1(n) to describe the
highest frequency component of the signal. This IMF may contain
mode mixing with two or more frequency bands contained within
the signal. After a Hilbert decomposition of the IMF, y1(n), into
a1(n) and f1(n), an energy weighted mean

f̄ =

∑k
i=1 a1(i)f

2
1 (i)∑k

i=1 a1(i)f1(i)
(11)

of the Hilbert frequencies gives the mean frequency over k sam-
ples. An approximation of the frequency of the higher component
can be found by finding the energy weighted mean of all points
whose frequency is greater than f̄ . Choosing a masking signal of
the form s(n) = a0 sin(2πf̄ n

fs
) leads to good performance when

each frequency within the signal is separated by at least a factor of
2. The choice of a0 can affect the performance of the algorithm.
Generally the optimal choice of am depends on the frequencies
and amplitudes of the components, but the factor of 1.6 above the
average amplitude of the components is a decent rule of thumb.
Figure 3 shows how error changes with a0. Note the dramatic
drop in error around a0 = 1.6 in this case. The best value of a0

depends on both the amplitudes and frequencies of the components
involved. As is usual with EMD, experience must guide the choice
of parameters for a particular problem.
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Fig. 4. The signal x(t) as in (10) with f1 = 1776 Hz and
f2 = 1200 Hz is in the top graph. The middle graph contains the
IMFs computed using standard EMD. Note how a fraction of the
lower frequency component combines with the higher frequency
component. In the bottom graph a masking signal of 2100 Hz pre-
vents the two signals from combining.

4.2. Using Masking Signals to Separate Components

Whenever the ratio of high frequency to low(next highest) fre-
quency is less than 2, EMD interprets the combination as having
some degree of modulation. By choosing a masking frequency
higher than the highest frequency component, it is possible to sep-
arate two components whose frequencies are within a factor of 2 of
each other (Figure 4). The presence of the higher frequency mask-
ing signal causes the first component to be included in the first IMF
while the second is ignored. Without the masking signal, a portion
of the lower frequency component is interpreted as being part of
the higher frequency component. Figure 5 shows how masking
signals can help to separate signals that are close in amplitude.

5. CONCLUSION

Empirical Mode Decomposition is an algorithm that decomposes
signals into Intrinsic Mode Functions which admit an unambigu-
ous definition of instantaneous frequency and amplitude at each
sampled time for each component. Because EMD is not defined
analytically, experimentation provides the primary means of un-
derstanding the algorithm. While the DFT interprets all sums of
sine waves as sums, EMD interprets some of these sums as sums
and others as AM signals. In many cases this interpretation is el-
ementary, but for the cases in which the interpretation has been
ambiguous, EMD provides an answer. An interesting question
is whether the EMD interpretation has a natural or experimental
basis. For example, does the EMD decomposition of pure tones
correspond to psychoacoustic observations of human hearing?

Intermittency is another difficulty of using EMD in many real-
world applications. By examining the high frequency content of a
signal, we construct a masking signal that is used to prevent mode
mixing by adding and then subtracting the masking signal from
the original. Unlike methods proposed in [5, 6] there is no hard
decision that must be made in eliminating intermittency. In cases
when the components are well separated in frequency, this method
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Fig. 5. Results from EMD applied to the two-tone signal x(t) =
sin(2πf1t)+sin(2πf2t) with f1 = 1776 Hz and f2 varying from
50 to 2500 Hz. The horizontal axis displays the value of f2. The
top graph shows the error between the first IMF and sin(2πf1t).
The bottom graph shows the error between the first IMF and x(t).
While f2 < 1000 Hz, EMD interprets x(t) as two signals. As
the error in the bottom graph goes to zero, EMD interprets the
signal as a single modulated component. Adding a masking signal
increases the maximum value of f2 for which the two sine waves
are separated by EMD from around 1000 Hz to 1200 Hz.

works as well as could be desired. In certain regions where com-
ponents are too close together in frequency to be separated using
standard EMD, the masking signal technique can be used to distin-
guish the two components. The decision as to whether two com-
ponents should be separated depends on the problem at hand. This
method provides the researcher an opportunity to separate compo-
nents of different, but similar, frequencies that was not previously
available using EMD.
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