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ABSTRACT

Information-theoretic characterization of time-frequency dis-
tributions have been successful at quantifying the complex-
ity of non-stationary signals. Information measures such
as entropy and divergence have been adapted to the time-
frequency domain for counting the number of signal com-
ponents, evaluating the performance of different kernels and
discriminating between signals based on their information
content. Inspired by the success of these measures and in
order to develop a more comprehensive information pro-
cessing theory on the time-frequency plane, we introduce
a mutual information measure for time-frequency distribu-
tions. The properties of this measure are derived and its ap-
plication to signal classification problems is illustrated with
examples.

1. INTRODUCTION

Time-frequency distributions (TFDs) are used for represent-
ing the energy distribution of time-varying signals simulta-
neously in time and frequency. Despite their wide use in
areas such as detection and classification of signals, their
capacity in representing information has not been evaluated
quantitatively. In order to address the issue of information
representation on the time-frequency plane, a comprehen-
sive theory of information processing needs to be devel-
oped.

In recent years, there has been an interest in adapting
information-theoretic measures to the time-frequency plane
in order to quantify signal complexity [1, 2, 3]. The applica-
tion of information-theoretic measures such as entropy and
divergence have made it easier to quantify the complexity of
non-stationary signals on the time-frequency plane as well
as differentiate between different signals. Despite the suc-
cess of entropy in characterizing a signal’s complexity on
the time-frequency plane, it is not sufficient in quantifying
the dependencies between signals. In order to have an effec-
tive information-theoretic signal characterization and clas-
sification system, we need an information-theoretic mea-
sure that quantifies the dependencies between signals on
the time-frequency plane. Mutual information is one such
measure that has been used effectively in various statistical

signal processing applications including classification and
source separation [4].

The mutual information is defined as a measure of inde-
pendence between random variables. In the case of time-
frequency distributions, where the underlying signals are
not necessarily random, a modification of the definition of
mutual information is necessary. Instead of measuring the
statistical dependence between signals, mutual information
on the time-frequency plane should measure the dependence
between the time-frequency distributions of the individual
signals and the joint distribution of the signals. In this pa-
per, we introduce a time-frequency based mutual informa-
tion measure and present its properties.

In Section 2, a new measure based on mutual informa-
tion is derived to quantify the dependence/disjointness of
signals on the time-frequency plane and its major properties
are discussed. Section 3 illustrates the application of this
new measure to signal classification problems, and shows
the reduction in classification error compared to conven-
tional similarity measures such as correlation. Finally, Sec-
tion 4 gives the conclusions and discusses some possible
future work.

2. TIME-FREQUENCY EQUIVALENT OF MUTUAL
INFORMATION

2.1. Background on Information-Theoretic Measures on
the Time-Frequency Plane

A time-frequency distribution, C(t, f), from Cohen’s class
can be expressed as 1 [5]:

C(t, f) =

� � �
φ(θ, τ)s(u+

τ

2
)s∗(u− τ

2
)ej(θu−θt−2πτf)du dθ dτ,

(1)

where φ(θ, τ) is the kernel function and s is the signal.
Some of the most desired properties of TFDs are the energy
preservation and the marginals. They are given as follows
and are satisfied when φ(θ, 0) = φ(0, τ) = 1 ∀τ, θ.

1All integrals are from −∞ to ∞ unless otherwise stated.
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∫ ∫
C(t, f) dt df =

∫
|s(t)|2 dt =

∫
|S(f)|2 df,

∫
C(t, f) df = |s(t)|2 ,

∫
C(t, f) dt = |S(f)|2.

(2)

The formulas given above evoke an analogy between a TFD
and the probability density function (pdf) of a two-dimen-
sional random variable. This analogy has inspired the adap-
tation of information-theoretic measures such as entropy to
the time-frequency plane. The main difference between TFDs
and pdfs is that TFDs are not always positive. Therefore, in
this paper the analysis focuses on spectrograms since they
are always positive. Another important point is that the dis-
tributions have to be normalized by their energy before ap-
plying any information-theoretic measure.

2.2. Definition of Mutual Information on the Time-Fre-
quency Plane

For two random variables, X and Y , the mutual information
is defined as:

I(X;Y ) =
∑

x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
, (3)

where p(x, y), p(x) and p(y) are the joint and marginal
probability density functions of X and Y , respectively. I(X; Y )
achieves its minimum when X and Y are independent and
is equal to 0.

In the case of time-frequency distributions, where we
do not necessarily have random signals and TFDs are not
actual probability density functions, we will adapt the defi-
nition of mutual information using energy density functions
instead of probability density functions. Therefore, the in-
dividual energy distributions of signals x(t) and y(t) de-
fined as Cx(t, f) and Cy(t, f), respectively, correspond to
the marginal densities, p(x) and p(y), given in equation (3).
Using the same definition, the joint density function in equa-
tion (3) will be replaced by the joint energy distribution of
x(t) and y(t) defined by the cross-spectrogram of the two
signals:

Cxy(t, f) = STFTx(t, f)STFT ∗
y (t, f), (4)

where STFTx(t, f) =
∫

h(τ−t)x(τ)e−j2πfτ dτ with h(t)
being the data window. Cxy(t, f) is the joint energy distri-
bution of x(t) and y(t) since its time marginal yields the
cross energy of the two signals:

∫
Cxy(t, f) df = x(t)y∗(t). (5)

Since Cxy(t, f) can be complex-valued, its absolute value
will be used in the definition of mutual information. There-
fore, mutual information between two non-stationary sig-
nals as measured through their time-frequency distributions
is defined as:

I(Cx, Cy) =
∫ ∫

|Cxy(t, f)| log
|Cxy(t, f)|

Cx(t, f)Cy(t, f)
dt df.

(6)

2.3. Properties of Mutual Information on the Time-Frequency
plane

In this section some important properties of the mutual in-
formation measure will be derived.

• I(Cx, Cy) is a symmetric measure. In order to prove
this property, one needs to show that |Cxy| = |Cyx|.
Since

Cyx(t, f) = STFTy(t, f)STFT ∗
x (t, f),

= C∗
xy(t, f), (7)

the magnitudes of the joint energy distributions are
equal to each other.

• If the two signals, x(t) and y(t), are equal to each
other, I(Cx, Cy) equals to the entropy of the individ-
ual signals. This can be shown as follows:

I(Cx, Cx) =
∫ ∫

Cx(t, f) log
Cx(t, f)
Cx(t, f)2

dt df,

= −
∫ ∫

Cx(t, f) log Cx(t, f)dt df,

= H(Cx). (8)

For deterministic signals, this constitutes the maxi-
mum of mutual information since when the two sig-
nals are equal to each other the dependence between
the signals reaches its maximum. Note that we would
end up with a similar result for signals that are equal
to each other except for an amplitude scale factor,
since time-frequency distributions are normalized be-
fore computing any information-theoretic quantity.

• If x(t) and y(t) are well-separated on the time-frequency
plane, i.e. their TFDs do not overlap, then the mutual
information between them is equal to zero. When the
two signals are well-separated on the time-frequency
plane, Cx(t, f)Cy(t, f) = 0,∀t, f . Therefore,

|Cxy(t, f)| = |STFTx(t, f)STFT ∗
y (t, f)|,

= |STFTx(t, f)||STFT ∗
y (t, f)|,

=
√

Cx(t, f)
√

Cy(t, f),

= 0, (9)
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which implies that the mutual information I(Cx, Cy) =
0. This is analogous to independent random variables
having zero mutual information.

• The two properties derived above can be combined to
define another information-theoretic measure: condi-
tional entropy. The difference between the entropy
of the signal x(t) and the mutual information is de-
fined as the conditional entropy of signal x(t) given
y(t). This quantity is equal to zero when x(t) =
y(t) by the second property, and is equal to H(Cx)
when x(t) and y(t) are well-separated on the time-
frequency plane by the third property. The condi-
tional entropy of signal x(t) given y(t) can be defined
as:

H(Cx|Cy) = H(Cx) − I(Cx, Cy). (10)

The properties derived above can be easily illustrated for
a sample signal. Consider two gabor logons separated by
∆t from each other, i.e. x(t) = g(t) + g(t − ∆t), where

g(t) = exp(− (t−t0)
2

2σ2 ) exp(−j2πf0t). By the second and
third properties, the mutual information between x(t) and
g(t) equals to the entropy of g(t) when ∆t = 0, and goes to
zero as ∆t → ∞. This phenomenon is illustrated in Fig. 1,
where the maximum of the mutual information is equal to
5.98 which is equal to the entropy of a single gabor logon.
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Fig. 1. Mutual information between two gabor logons with
respect to the time separation, ∆t

3. RESULTS

In this section, the application of the proposed mutual in-
formation measure for signal classification on the time-fre-
quency plane will be illustrated through examples. Signal
classification on the time-frequency plane has been consid-
ered in previous research using different metrics such as cor-
relation and mean square error [6]. The performance of the
proposed mutual information measure will be compared to
these conventional metrics.
Example 1: The two signal classes considered in this ex-

ample are:

C1 : y(t) = exp(−jω0t) + exp(−(β1t
2 + ω1t)) + v(t),

C2 : y(t) = exp(−jω0t) + exp(−(β2t
2 + ω2t)) + v(t), (11)

where ω0 = 0.3, β1 is uniformly distributed between [0.01,0.4],
ω1 is uniformly distributed between [0.01, 1.01], β2 is uni-
formly distributed between [0.2,0.9], ω2 is uniformly dis-
tributed between [0.2,0.3], and v(t) is white Gaussian noise.
A training set consisting of 100 samples of each class is
constructed, and the average TFDs representing each class,
C1(t, f) and C2(t, f), are computed. A test set consist-
ing of 100 samples of each class is generated and the time-
frequency distribution of each sample is compared to the
class averages using mutual information, i.e. I(Cx, C1)
and I(Cx, C2) are computed. The classification decision
is made to choose the class that has the higher mutual infor-
mation with the given sample signal as follows:

Ĉ = argmax{i=1,2}I(Cx, Ci), (12)

where Ĉ is the class assigned to signal x. The probability
of error can then be computed as:

Pe = P (Ĉ �= C1|C1)P (C1) + P (Ĉ �= C2|C2)P (C2).
(13)

The performance of the mutual information measure for this
classification problem is quantified for different SNRs by
computing the probability of error. Fig. 2 illustrates the
probability of error in classification versus SNR. It is ob-
served that even at high noise levels the probability of error
is low.
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Fig. 2. Probability of error versus SNR for mutual informa-
tion based classification

The proposed mutual information measure is also com-
pared to conventional measures such as correlation. It is ob-
served that even though the probability of errors are compa-
rable in the case of Gaussian noise, the mutual information
measure is superior to correlation-based measures when the
noise distribution is non-Gaussian. To illustrate this point,
the classification problem formulated by equation (11) is
considered with non-Gaussian noise. The probability of er-
ror in classification versus SNR for both the mutual infor-
mation and correlation measures is illustrated in Fig. 3. The
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results indicate that as the SNR decreases the deviation of
the TFD from a Gaussian distribution increases, thus mutual
information becomes a better discrimination measure com-
pared to correlation.
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Fig. 3. Probability of error versus SNR for mutual informa-
tion and correlation based classifiers

Example 2: In this example, the proposed measure is ap-
plied to a fault detection problem in fuel pumps. The cur-
rent through a faulty electric motor is a non-stationary signal
with short transients which are indicative of the faults [7] 2.
The proposed mutual information measure is applied to the
problem of classifying between 3 different types of faults:

1. One of the coils is poorly fused causing its resistance
to be increased.

2. The coil is cut entirely.

3. The commutator face was scored during assembly.

Six motors belonging to each class are available. The pro-
posed mutual information measure is applied to this classifi-
cation problem, measuring the dependencies between each
class:

Ĉ = argmax{i=1,2,3}I(Cx, Ci), (14)

where Ci is the average TFD of class i. One sample is taken
out at a time and the classifier is trained on the remaining
five samples and is tested on the sixth one. The classifi-
cation performance of mutual information and correlation
measures are compared. Using the mutual information mea-
sure 16 out 18 motors are correctly classified whereas using
the correlation measure 14 out of 18 motors are correctly
classified.

4. CONCLUSIONS

In this paper, we introduced a new information-theoretic
measure, mutual information, on the time-frequency plane.
The major properties of this measure, such as its maximum
and minimum points, are derived. It is shown that mutual

2The author wishes to thank Elias Strangas and Wes Zanardelli of
Michigan State University for the electric motor data and for the permis-
sion to use it in this paper.

information can quantify the disjointness of two signals on
the time-frequency plane similar to determining statistical
independence in information theory. The application of this
measure in signal classification is illustrated through both
simulations and real-life signals. It is observed that mutual
information is a better measure in classifying non-Gaussian
signals compared to the conventional discrimination mea-
sures such as correlation.

The results presented in this paper can be extended to
non-positive distributions by modifying the definition of mu-
tual information using generalized entropy measures such
as Rényi’s entropies [8]. The definition of mutual infor-
mation can also be generalized to include more than two
signals at a time.
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