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ABSTRACT 

Analytical form of the instantaneous frequency law 

(IFL) is very important when the physical parameters have 

to be evaluated from the time-frequency content of a 

signal. Generally, the analyzed signals are composed of 

several time-frequency components characterized by 

various non-linear IFLs. To deal with such kind of 

signals, we propose a new method based on the warping 

operators (WO) and on the complex time distribution 

(CTD). Using parallel structures composed of several 

WOs, some time-frequency components of the analyzed 

signal are linearized. This linearization is highlighted by 

using the CTD which considerably reduces the artefacts 

due to the complexity of the analyzed signal. This leads to 

an accurate estimation process, illustrated and justified by 

numerical and real examples.      

1. INTRODUCTION 

Analysis of the signals characterized by complex time-

frequency behaviour is a very challenging topic, due to 

the richness of the information that describes the analyzed 

phenomena. In a large number of applications the analysis 

of the time-frequency (T-F) content provides an efficient 

solution of the problems arising in these fields [1]. The 

signals associated to these applications are generally 

characterized by many non-linear time-frequency   

structures. A correct characterization of each time-

frequency structure could be achieved by using an 

adaptive, concentrated and cross terms free time-

frequency representation (TFR), which will match the IFL 

of each signal component [2]. The choice of these TFRs 

implies the extraction of each time-frequency component 

of the signal. This could be done by approximating these 

components with the elementary functions from a large 

dictionary. This approximation is typically done by a 

projection algorithm such as, for example, the Matching 

Pursuit method. The result consists of a set of elementary 

functions corresponding to the time-frequency structures 

of the signal. Each function is completely described by its 

parameters : the time and frequency centres, duration, 

chirp rate and the non-linearity type. According to this last 

parameter, the choice of the adapted TFR is automatically 

done. The current technique for analysis of non-linear T-F 

structures is based on warping operators [3].  

In this paper we propose an alternative to this class of 

methods, based on the combination of the warping 

operator principle and the complex argument concept. The 

key point of this method is to use the warping principle 

not only for the design of the adapted TFR to each 

elementary function, but also to estimate their IFL. The 

WOs of interest are organized in a parallel structure. In 

order to accurately estimate the linearized T-F structures, 

we apply the complex time distribution, with a remarkable 

property related to the drastic reduction of the artefacts 

generated by the auto or cross terms [4], [6].  

The paper is organized as follows. In Section 2 a brief 

presentation of the warping operator concept is done. The 

CTD and its connection to the warping principle is 

presented in the Section 3. In section 4 the Warped 

Complex-Time Distribution is proposed. Presented theory 

is justified by numerical and real examples in Section 5.   

2. WARPING OPERATOR PRINCIPLE 

Matching the signals with non-linear IFLs requires a 

joint distribution with different instantaneous frequency 

and group delay localization properties. One of the most 

known techniques is the unitary similarity transformation 

[3]. A frequently used unitary transform is the axis 

transformation [3]. For the signal s(t), it is defined as an 

operator U on l2( ), i.e.:  

1/ 2

's x w x s w xU (1) 

where w is a smooth, one-to-one function [3], called 

warping function. Generally, this function is chosen to 

ensure the “linearization” of the signal’s time-frequency 

behavior. Therefore, for a signal expressed as : 

2j c t
s t e    (2)
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The associated warping function, w, is defined as the 

inverse of  (t), where (t) is the frequency modulation 

law and c is the modulation rate, [3].  

 Thus the linearization should enable that the TFR of 

warped signal produces a constant instantaneous 

frequency. Distributions from the Cohen’s class (CTFR) 

are usually used for these TFRs. The example illustrated 

in the figure 1 shows the main property of the warping 

operator. Here, we consider the signal 
1.32 0.08j ts t e and 

the linearization of its time-frequency content, provided 

by  the warping operator 1/1.3w t t .

Figure 1. Linearization of T-F content using warping operator 

 Note that the linearization transforms the original 

signal into a tone with the frequency close to 0.08 – the 

real modulation rate.   

 In the case of many complex T-F structures, 

applicability of the warping operator concept becomes 

more complicated (for a simple T-F structure solution, see 

[2]). This problem may be modeled as  

1

exp 2
N

i i

i

s t j c t                 (3) 

where 
1,i i N

 is a set of elementary functions which 

can be associated to a warping operator 
i

W such that : 

i i t tW       (4)

 Application of one of these WOs to the signal (3) will 

introduce the artifacts related to the complexity of the 

signal. Namely, application of a WO, 
i

W , to its 

corresponding function generates a tone, while the effect 

to the other functions 1,i Ni
i j

 is the appearance of non-

linear energetic terms superposed on the tone. This 

phenomenon is illustrated on figure 2, for the warped 

version of the signal expressed as : 

0.2 0.7 0.2 0.7
1 22 2 0.75j c t c t j t t

s t e e            (5) 

  To warp this signal, we use the WO associated to the 

elementary function t0.7, i.e.

1/:k

k

t
t tW      (6) 

where we take k=0.7. 

Figure 2. Artifacts due to the signal complexity 

 Note that the application of the WO (6) to the signal 

(5) induces an imperfect linearization and some artifacts, 

due to the existence of the term t0.2 (figure 2). 

Consequently, estimation of the term with t0.7 (the 

modulation rate c2, according to the notations introduced 

in (3)), using a CTFR, could be inaccurate. In the next 

section, we introduce the Complex Time Distribution as 

an efficient tool for estimation of the modulation rates in 

the warped domains.  

3. COMPLEX TIME DISTRIBUTION 

 The complex time argument has been introduced in [4] 

as an efficient way to produce almost completely 

concentrated representations along the IFLs. 

Mathematically, the complex time distribution (CTD) is 

defined as : 

*,
4 4

4 4

s

j j j

CTD t s t s t

s t j s t j e d

  (7) 

where the continuous form of the “complex-time signal” 

is

1

2

j ts t j S j e e d  (8) 

and S j  is the Fourier transform (FT) of signal s.

The main property of the CTD consists in the 

capability to attenuate the high-order terms of the 

polynomial decomposition of the IFL. Hence, for the 

warped version of the signal given in (3) (using 
i

W )

1

1;

exp 2 exp 2
i

N

i j j i

i i j

t

s t j c t j c tW
    (9) 

the CTD has the following expression [4] : 

j2 t,
, 2 2 FT e

i

Q

s iCTD t c
W

   (10) 

where   is the lag used in (7). 

The (t) corresponds to the artifacts generated by the 

combination between given WO and other elementary 

functions, and Q(t,  ) is the spread function which affects 
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the visibility of the tone peaking in ci . As proved in [4], 

in the case of the CTD, this function has a fifth order 

dominant term (for comparison, the spectrogram and the 

WVD have a second and a third order dominant term, 

respectively), which corresponds to a drastic reduction of 

the higher terms of (t). This attenuation allows us to 

estimate the modulation rates as the frequency locations of 

the maxima of the frequency-marginal defined as : 

,

arg max

i i

ii

CTD t dt

c

W               (11) 

 The following example illustrates the benefit of the 

use of  the CTD. As a test signal we use the one defined in 

(5). 

Figure 3. Artifact reduction in the CTD domain  

 Comparing the figures 2 and 3, one may observe that 

CTD makes the tone corresponding to modulation rate 

c2=.75 much more energetic than the artifacts, leading to a 

correct localization of the peak associated to c2. This 

property of the CTD will be exploited in the next section, 

where this method will be applied, in a parallel manner 

[5], for the estimation of modulation rates associated to 

each function which composes this structure.  

4. WARPED COMPLEX TIME DISTRIBUTIONS 

 In the previous section we introduced the CTD as a 

tool for attenuation of the artifacts which appear in the T-

F plane when a particular WO is applied on a signal with 

a complex T-F behavior (3). The problem is more 

complicated in the case of multi-component signals 

expressed as  

1

2

1

N

ni i

i

P j c t

n

n

x t A e b t               (12) 

where P is the number of components and b is the noise. 

We suppose that the functions 
1,i i N

 are invertible. 

Therefore, one can define a set of warping operators 

associated, via (4), to one of the elementary functions. 

Estimation of the modulation rates, {cni}, could be done 

by reducing the corresponding function, i, to a sinusoid, 

thanks to the associated WO. Furthermore, the CTD is 

used in order to reduce the artifacts (see section 3) and to 

provide an accurate estimation. This can be done in  a 

parallel manner, each branch being composed of a WO 

associated to an elementary function of interest, the CTD 

and an estimator of the maxima positions in the CTD 

frequency marginal domain (11) (see the figure 4). 

Figure 4. Diagram of the IFL modeling using  

the warped complex time distributions (WCTD) 

Since no initial information about the analyzed signal 

was assumed, the set of function of interest (and the WOs) 

is chosen to cover the number of possibility as larger as 

possible. The experimental results proved that using the 

monomial functions, , 0,1kt t k , it is possible to 

describe a large class of signals. Nevertheless, the 

accurateness of the modeling depends on the number of 

WOs involved in the parallel structure.  

5. RESULTS

To illustrate the presented method, let us consider the 

following signal :  
0.2 0.3 0.7 0.2 0.3 0.72 .2 2 1.5 1.2 0.1j t t t j t t t

s t e e   (13) 

The estimation, via WCTDs, of the modulation rates 

associated to t0.7 is illustrated in the next figure.  

Figure 5. Estimation of modulation rates using WCTD  

Due to the good concentration provided by the CTD, 

the frequency locations corresponding to the modulation 

rates are very close to the real positions (dashed lines). In 

spite of the fact that the two components are close (see the 

WVD, figure 5), the WCTD provides an accurate result.  

For this example we have used the monomial 

functions kt t  with k between 0.1 and 1 with an 

increment about 0.1. Taking into account the estimation 

results obtained for all branches, we obtained the IFLs 

plotted in the next figure. 
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Figure 6.Theoretical and Estimated IFLs 

Note that the estimated IFLs are almost superposed on 

the real one, indicating also the accurateness of the 

proposed modelling procedure. 

Practically, the existence of closed-type WOs (e.g., 

0.6 0.7 0.8, ,
t t t

W W W ) induces some ambiguities in evaluation 

of the coefficient c. Namely, some elementary functions 

could not exist in the phase expression of the signal (e.g. 

t0.6  and t0.8 in the case of signal (13)). Nevertheless, the 

effect of their associated WOs will be a near linearization 

of the structures corresponding to the close elementary 

functions (in the case of signal (13) - t0.7). This 

phenomenon is illustrated in the figure 7.  

Figure 7. Ambiguity in the estimation of the 

modulations rates in closed branches  

To overcome this problem, we compare the results 

provided by three close branches and we choose the 

coefficients which correspond to the maxima of “ ”

function with the largest value. Mathematically, this 

procedure, iterated for all P coefficient, is written as :  

1

1

 max max  and

max max

ˆ

1

i i

i i

ijc the correct coefficient

i i

If

Then

Else 

     (14) 

In the next figure, we illustrate the modeling results 

for a signal corresponding to a whistler-mode propagation 

through the Earth's magnetized plasma envelope [7]. 

Figure 8. WCTDs vs spectrogram for a real data 

We remark that the TFR corresponding to the signal 

modeled via WCTDs is qualitatively better than the TFR 

provided by spectrogram. This image, collaborated with 

the analytical description of the IFLs (figure 8), provide 

interesting information about the analyzed process.  

6. CONCLUSION 

In this paper, we have presented a new method for the 

characterization of a multi-component signal with non-

linear IFLs. This method is based on the signal warping

operation and the estimation, for each deformation, of the 

parameters of the linear time-frequency structures. The 

results illustrate the performances of the combination 

between WOs and the CTD. Otherwise, the results 

obtained for real data illustrate the capability of the 

proposed method to provide an interesting description, 

appropriate to physical analysis. For this reason, we 

intend to apply this method in the case of signals 

propagating trough heterogeneous channels. 

The proposed method could be used as a tool for the 

phase modeling of a multi-component signal using an 

arbitrary function set. It could be an alternative to the 

polynomial phase modeling : its main advantage is the 

flexibility in the choice of elementary functions.  
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