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ABSTRACT

In this paper, we address the problem of estimation of the parame-
ters of mono and multicomponent Polynomial Phase Signals (PPS)
affected by alpha-stable noise using subspace methods. We pro-
pose two new estimators : a modified multiple signal classification
MUSIC for PPS affected by Gaussian noise, and a modified ro-
bust MUSIC algorithm for PPS based on fractional lower-order
statistics (FLOS). Simulation results show that the robust MUSIC
estimator is able to estimate the values of the phase parameters in
impulsive environment hence outperforming the standard estima-
tors.

1. INTRODUCTION

Constant amplitude polynomial phase signals (PPS) are commonly
used in many fields of engineering such as radar, sonar and telecom-
munications [1]. Many algorithms have been proposed in literature
for the analysis of PPS. Non-parametric methods relying on time-
frequency analysis tools such Polynomial Phase Wigner-Ville Dis-
tribution(PWVD) has been extensively used for the instantaneous-
frequency (IF) estimation, as well as parametric methods such as
the polynomial phase transform for the estimation of the param-
eters of the phase. In many practical situations, the signal under
consideration may be subjected to additive noise which is assumed
to be Gaussian. Several papers have considered this case as in [2].
However, the assumption of Gaussianity is not valid in some cases
when noise is generated from atmospheric or underwater acoustic
phenomena which displays impulsive characteristics with heavy-
tailed distributions that degrade significantly the signal. Impulsive
noise can be modeled by α-stable random process. The fact that
α-stable random variables with α < 2 have infinite second mo-
ment means that many techniques based on second order statistics
(SOS) do not apply, and therefore, we must consider other alterna-
tives to mitigate the effect of the non-Gaussian impulsive noise. In
[3] we proposed a robust FLOS based PWVD for IF representation
of PPS in α-stable noise. Recently some subspace methods have
been proposed to analyse PPS. In [4], the authors derived a Capon
form of the wigner distribution and polynomial periodogram. In
[5], the author extended the Capon estimator to the analysis of
PPS by considering a time-dependent autocorrelation sample esti-
mates of the nonstationary signal. In [6] the MUSIC algorithm has
been applied for parameter estimation of PPS in Gaussian noise
by transforming the phase to a linear phase using the polynomial
phase transform.
In this paper, we propose a robust MUSIC estimator for PPS of
order higher than 2 corrupted by additive α-stable impulsive noise
using Fractional Lower-Order Statistics (FLOS) introduced in [7]

which handle robustly the presence of heavy-tailed noise in the
data .
This paper is organized as follows. In section 2, we briefly re-
view the model of PPS. Then in sections 3, we present the model
of complex α-stable noise. In section 4,we introduce our FLOS
based subspace method for the estimation of PPS in impulsive
noise. Some simulation examples are presented in section 5. Con-
cluding remarks are given in Section 6.

2. THE POLYNOMIAL PHASE SIGNAL MODEL

The constant amplitude polynomial phase signal of order M is
given by

s(n) = A exp {jφ(n)} = A exp

{
j

M∑
i=0

ain
i

}
(1)

where A is the amplitude of the signal, the ai’s (i = 0, . . . , M)
are the phase coefficients; assumed real and unknown.
The instantaneous frequency (IF) is defined as

fi(n) =
1

2π

dφ(n)

dt
=

1

2π

M∑
i=1

i ai ni−1. (2)

3. COMPLEX α STABLE NOISE

There exists many physical processes generating interference con-
taining noise components that are impulsive in nature (e.g., at-
mospheric noise in radio links; and radar reflections from ocean
waves, and reflections from large, flat surfaces including build-
ings and vehicles). The amplitude distributions of such returns
are not Gaussian, and tend to produce large-amplitude excursions
and occasional bursts of outlying observations. Impulsive noise
profoundly degrades the performance of standard algorithms and
produce poor results.
In our case, the impulsive noise is modeled by complex α stable
signal X = X1 + jX2 which is better defined by its characteristic
function [8]

ϕ(t) = E{exp[j�(tX∗)]} = E{exp[j(t1X1 + t2X2)]} (3)

where t = t1 + jt2. X is called isotropic SαS if (X1, X2) has a
uniform spectral measure [8]. In this case, the characteristic func-
tion reduces to

ϕ(t) = E{exp [j�(tX∗)]} = exp(−γ |t|α) (4)

The stable distribution is completely characterized by the param-
eters α (0 < α ≤ 2) named the characteristic exponent, γ is the
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dispersion (γ > 0). The characteristic exponent determines the
shape of the distribution. The smaller α is, the heavier the tails of
the alpha stable density. We should also note that for α = 2 the
distribution coincides with the Gaussian density. The dispersion γ
determines the spread of the distribution in the same way that the
variance of a Gaussian distribution determines the spread around
the mean [7]. For α-stable processes only the moments of order
r < α exist. So estimation methods based on second order statis-
tics of the data cannot be applied. Through out this paper the value
of α is assumed known.

4. TIME-COEFFICIENT REPRESENTATIONS FOR THE
ANALYSIS OF PPS

The multicomponent signal is modeled by the sum of K PPS

x(n) = y(n) + w(n) (5)

=
∑K

k=1 sk(n) + w(n) 0 ≤ n ≤ N − 1 (6)

with
sk(n) = Akejφk(n) (7)

where the Ak are constant amplitudes, φk are modeled as in (1)
and the w(n) is the additive noise.

4.1. Capon’s estimator for PPS analysis

In [5], a modified Capon method is proposed for noiseless mul-
ticomponent PPS analysis, where the signal is passed through a
time-varying filter of order p, so that only one particular PPS is
selected and the others are suppressed. The output signal is given
by

z(n) =
n∑

m=n−p

h(n, m)x(m) = hT (n)x(n) (8)

where h(n) is the impulse response of the filter

h(n) = [h(n, n), h(n, n − 1), . . . , h(n, n − p)]T (9)

and x(n) is the short-time signal vector

x(n) = [x(n), x(n − 1), . . . , x(n − p)] (10)

Then for an input signal with phase term ejφ(n), the transfer func-
tion of the filter which can be viewed as the extension of the Zadeh’s
generalized transfer function to PPS is given by

H(n, β) =

n∑
m=n−p

h(n, m)e−j[φ(n)−φ(m)] = hT (n)bp(n, β)

(11)
The vector bp(n, β) is given by

bp(n, β) = [1, e−j[φ(n)−φ(n−1)], . . . , e−j[φ(n)−φ(n−p)]]T (12)

where φ(n) =
∑R

r=0 βrn
r is polynomial phase kernel functions

and β is the coefficient vector β = (β1, β2, . . . , βR). Minimizing
the power at the filter output subject to the constraint that the signal
of interest is passed undistorted, i.e. H(n, β) = 1, one obtains the
time-coefficient representation (TCR) [5]

PCap(n, β) =
1

bH
p (n, β)R−1

x,p(n)bp(n, β)
(13)

where Rx,p(n) = E{xH(n)x(n)} is the time-dependent autocor-
relation of x(n).
In [9], the authors showed that the spectrogram and the Capon
estimator have the same performance in terms of resolution and
estimation of the instantaneous frequency of mono and multicom-
ponent signals. However, the Capon estimator can have a better
concentration in time-frequency plane. This property is still valid
in the case of PPS parameter estimation.

4.2. MUSIC estimator for PPS in Gaussian noise

If we consider that w(n) is Gaussian noise, and by following the
same procedure as in [5] with kernel function vector given in (12)
we propose the MUSIC estimator. Using the vector x(n) in (10),
we can write

x(n) = Bs(n) + w(n) (14)

where
s(n) = s1(n), . . . , sK(n)

T
(15)

B = bp(n, β1), . . . , bp(n, βK) (16)

and the noise vector

w(n) = w(n), . . . , w(n − p) (17)

It can be shown that the covariance matrix can be decomposed
into two subspaces : signal and noise subspaces [10]. The MUSIC
estimator can be written as

PMUSIC(n, β) =
1

bH
p (n, β)Ex,pEH

x,pbp(n, β)
(18)

where Ex,p = [eK+1eK+2 . . . ep] is obtained by performing the
eigendecomposition on the covariance matrix Rx,p(n) and retain-
ing eigenvectors vectors associated to the smallest p − K eigen-
values of the covariance matrix.
The autocorrelation matrix in equation (13) is singular, the prob-
lem of inversion can be solved by using diagonal loading ([5], eq.
12) which leads to an additional parameter to be determined. The
use of matrix decomposition allows to solve this problem. On the
other hand, it is possible to reduce the computational complex-
ity of the MUSIC estimator by using algorithms to estimate the
noise subspace without eigendecomposition such as the propaga-
tor method.

4.3. Proposed FLOM-MUSIC as an estimator of PPS in im-
pulsive noise

Many papers have treated the problem of direction of arrival esti-
mation (DOA) in the presence of impulsive noise. algorithms like
ROC-MUSIC and FLOM-MUSIC have been introduced in [8, 11].
We propose to modify the above MUSIC estimator in (18) to es-
timate the parameter of PPS in impulsive α-stable. In following
we consider only FLOM-MUSIC [11]. Assuming that the noise
w(n) in (6) is impulsive with α stable distribution, the second or-
der statistics (SOS) can not be applied. In this case the covariation
matrix for α-stable processes is equivalent to the covariance matrix
in the case of gaussian noise. In this paper we consider 1 < α ≤ 2.
For α < 1, one can use the zero-memory nonlinearity to clip the
impulsive noise [12].
The (i, j)th element of the covariation matrix Ĉ are obtained using
the vector in (10) as defined in [11]

Ĉx,p(i, j) = E{x(i)|x(j)|r−2x∗(j)} (19)
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where the value of the fractional moment r must satisfy the fol-
lowing inequality 1 < r < α ≤ 2, so the matrix Ĉ is bounded and
can be written using (14) in the form [11]

Ĉ = BΛBH + δI (20)

where B is defined in (16). Λ, and δ can be derived from ([11],
theorem 2). The robust time-coefficient representation is given as
follows

PFLOM−MUSIC(n, β) =
1

bH
p (n, β)Ex,pE

H
x,pbp(n, β)

(21)

where Ex,p = [eK+1eK+2 . . . ep] is obtained by performing the
SVD on the matrix Ĉ and retaining the left singular vectors asso-
ciated to the smallest p − K singular values of Ĉ.

5. SIMULATION RESULTS

In this section, we will demonstrate the performance gains when
using fractional lower order statistics. In our simulations, we used
signals of order M = 4 and kernel function phases φ(n) = (π/255)kn4,
with 0 ≤ k ≤ 100. The filter order p = 50. First, we consider a
monocomponent PPS as given below

x(n) =

{
ej(10π/255)n4

,

ej(50π/255)n4
, .

0 ≤ n ≤ 63
64 ≤ n ≤ 254

(22)

Figure 1 shows the Capon estimator for the fourth order noiseless
PPS. Now, we consider a complex SαS noise with the following
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Fig. 1. Capon estimator for the fourth order PPS

parameters α = 1.2, γ = 1. Figure 2(a) shows the effect of
the implusive noise on the MUSIC estimator. Using the proposed
FLOM-MUSIC with fractional moment r = 1.1, we can distin-
guish the two rays corresponding to the value of the phase param-
eters as shown in figure 2(b).
Now, we consider a two-component fourth order polynomial phase
signal whose Capon time-coefficient representation is shown in
figure 3.

x(n)) = ej(10π/255)n4
+ ej(50π/255)n4

, 0 ≤ n ≤ 254

Fig. 2(b) shows again the outperforming results of FLOM-MUSIC
w.r.t. standard algorithms illustrated in figures 4(a) and 4(b).
From simulations, the choice of the order of the filter p is impor-
tant, an example in figure (6) shows the TCR for p = 10 and
p = 30. We observe that increasing the value of p gives better
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Fig. 2. (a): MUSIC and (b): FLOM-MUSIC estimators of fourth
order PPS in α-stable noise with α = 1.2 and γ = 1
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Fig. 3. Capon estimator for two fourth order PPS

representation. On the other hand, increasing the value of the dis-
persion γ beyond value 3 (GSNR=-5dB) with worst case α = 1.01
leads to a degraded TCR. The GSNR is defined according to [8]

GSNR = 10 log

 
1

γN

N−1∑
n=0

|s(n)|2
)

(23)
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Fig. 4. (a): Capon and (b): MUSIC estimator of two fourth order
PPS in α-stable noise with α = 1.2 and γ = 1

IV - 471

➡ ➡



0 10 20 30 40 50 60 70 80 90 100

50

100

150

200

250

Radian phase−coefficient index

Ti
m

e

Fig. 5. FLOM-MUSIC estimator for two fourth order PPS in α-
stable noise with α = 1.2 and γ = 1
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Fig. 6. FLOM-MUSIC for two different values of the filter order
(a): p = 10, (b): p = 30

6. CONCLUSION

In this paper, we reviewed a new time-coefficient representation
(TCR) for polynomial phase signals. We proposed to use the MU-
SIC algorithm to estimate the values of the parameters of the phase
of PPS affected by Gaussian noise. From simulation we showed
that impulsive noise degrades considerably the TCR as it is the
case for time-frequency representation (TFR). In order to attenuate
the effect of impulsive noise, we proposed a Fractional Lower Or-
der Moment based MUSIC to estimate these parameters for PPS
affected by impulsive α-stable noise. From simulations, we ob-
served that the approaches considered in this paper performed sig-
nificantly better than the standard algorithms. Future work, we
can reduce the computational complexity of the MUSIC algorithm
by using recently developed techniques in array processing which
compute the noise subspace without SVD or eigendecomposition.
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