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ABSTRACT
In this paper, we propose a linearization (compensation of

nonlinear distortion) method for loudspeaker systems us-

ing the MINT (Multiple-input/output INverse-filtering The-

orem) and Volterra filters. In the proposed method, linear

inverse filtering of a target loudspeaker system is realized

by using the MINT so that exact linear inverse filtering can

be realized. The linearization performance becomes con-

sequently very high. On the other hand, since the con-

ventional linearization method cannot realize exact linear

inverse filtering, the performance deteriorates remarkably.

Experimental results demonstrate that the proposed method

has about 20dB higher performance than the conventional

one.

1. INTRODUCTION

Recently, digital audio systems have been spreading. In

the digital audio systems, some distortions occurring in the

transmission paths have been reduced significantly, and the

sound quality has been improved considerably. However,

loudspeaker systems, which are a human interface in the

digital audio systems, have a lot of distortions, especially,

nonlinear distortions. The performance of the whole dig-

ital audio systems consequently deteriorates. Hence, the

compensation of the nonlinear distortions (linearization of

loudspeakers) is a very important issue in the digital audio

systems.

The compensation (linearization) can be achieved by us-

ing a Volterra filter [1, 2], which identifies the nonlinear-

ity of a target loudspeaker system, and a linear inverse fil-

ter, which compensates the linear distortion [3, 4, 5, 6].

One of some factors influencing the compensation perfor-

mance is the estimation accuracy of the Volterra filter. How-

ever, this estimation accuracy can be made high by using an

identification method employing multi-sinusoidal waves [5,

6]. Another factor is the design accuracy of the linear in-

verse filter to compensate linear distortions. In other words,

whether exact linear inverse filtering can be realized influ-

ences the compensation performance. However, the exact
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linear inverse filtering cannot be realized because loudspeaker

systems have nonminimum phases. In this case, only an ap-

proximate inverse filtering is realized. If the approximate

accuracy is low, the compensation performance of nonlin-

ear distortions deteriorates remarkably. We therefore pro-

pose a novel linearization method. In the proposed method,

we use the MINT (Multiple-input/output INverse-filtering

Theorem) [7], which can realize an exact linear inverse of

a target acoustic system. The compensation performance of

nonlinear distortions is consequently very high.

2. CONVENTIONAL LINEARIZATION METHOD
AND ITS PROBLEM

Figure 1 shows a block diagram of a conventional lineariza-

tion system, which can compensate the nonlinear distortions

of loudspeaker systems. In Fig. 1, D1(z) and D2(z1, z2)
represent the transfer functions of the first- and second-order

Volterra kernels of a loudspeaker system, respectively. D̂2(z1, z2)
is a Volterra filter to model the second-order Volterra kernel

of the loudspeaker system, and H1(z), which is a linear in-

verse filter of D1(z), is designed so as to satisfy the follow-

ing condition.

D1(z)H1(z) = z−∆ (1)

The second-order nonlinear transfer function of the whole

system is consequently represented by the following equa-

tion.

D2(z1, z2)z−∆ − D1(z)H1(z)D̂2(z1, z2)
= D2(z1, z2)z−∆ − z−∆D̂2(z1, z2)
= {D2(z1, z2) − D̂2(z1, z2)}z−∆

= 0 (2)

If D̂2(z1, z2) is equal to D2(z1, z2) of the loudspeaker sys-

tem and H1(z) is designed so as to satisfy the condition

shown in Eq.(1), the nonlinear inverse system can completely

compensate the second-order nonlinear distortion. The high

accuracy D̂2(z1, z2) can be obtained if narrow band signals

are used to model D2(z1, z2). On the contrary, H1(z) to sat-

isfy the condition of Eq.(1) can exist if and only if D1(z) is

a minimum phase function. However, the acoustical trans-
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: Linear inverse filter

D1(z) : First order Volterra filter of loudspeaker system

D2(z1,z2) : Second order Volterra filter of loudspeaker system

D2(z1,z2) : Model of D2(z1,z2)
∆ : Inverse modeling delay
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Fig. 1. Block diagram of the conventional linearization sys-

tem.

SL C

H1R(z)

Room Acoustic

H1L(z)
D1L(z)

D1R(z)SR

Fig. 2. Sound field inverse filtering using the MINT.

fer function D1(z) is generally considered to be a nonmin-

imum phase function. Hence, only an approximate inverse

filter is obtained. It is therefore very difficult from Fig. 1 to

compensate (cancel) D2(z1, z2) completely because H1(z)
does not satisfy Eq.(1). Accordingly, the performance of

linearization system is greatly influenced by whether exact

linear inverse filtering can be realized.

3. LINEARIZATION METHOD OF LOUDSPEAKER
SYSTEMS BY USING MINT

3.1. MINT [7]

In this section, we explain the MINT(Multiple-input/output

INverse-filtering Theorem), which can realize an exact lin-

ear inverse of a target acoustic system. Consider the acous-

tic system shown in Fig. 2. In Fig. 2, the transfer function

D11(z) from loudspeaker S1 to receiving point C is defined

by

D11(z) = z−ud11(z) (3)

where z−u is the time delay between S1 and C, d11(z)
the M ′th order polynomial of z−1, which represents reflec-

tion sound effects. The transfer function D21(z) from loud-

D1R(z)

D1L(z)

H2R,n

H1L,n(z)

+ + 

z -∆

: Adaptive inverse filters

D1L(z), D1R(z) : Linear elements of loudspeakers

∆ : Inverse modeling delay

x(n)

^

^

d(n)

e(n)

(z)

H1L,n(z),
^ H1R,n(z)^

y(n)

Fig. 3. Block diagram of identification method for

H11,min(z) and H21,min(z) by using adaptive filters.

speaker S2 to receiving point C is also defined by

D21(z) = z−(u+w)d21(z) (4)

where z−(u+w) is the time delay between S2 and C, d21(z)
the N ′th order polynomial of z−1. To realize inverse fil-

tering of the system, H11(z) and H21(z) must satisfy the

expression

1 = d11(z)H11(z) + z−wd21(z)H21(z) (5)

This relationship is called Diophantine equation. The solu-

tions for this equation exist if and only if d11(z) and z−wd21(z)
are relatively prime (in other words, do not have any com-

mon zero in the z-plane). The solutions is expressed by

H11(z) = H11,min(z) + z−wd21(z)Q(z)
H21(z) = H21,min(z) − d11(z)Q(z)

where Q(z) is an arbitrary polynomial. H11,min(z) and

H21,min(z) are the only pair of the minimum order solu-

tion that satisfies Eq.(5) and the orders have the following

relation.

deg H11,min(z) < deg z−wd21(z) = N + w

deg H21,min(z) < deg d11(z) = M

The property of the Diophantine equation is not concerned

with whether d11(z) and z−wd21(z) are nonminimum phase

functions. If some symmetrical positions of loudspeakers

and a microphone are avoided, d11(z) and z−wd21(z) does

not have a common zero. Hence, exact inverse filtering is

realized.

Next, we describe the computation of H11,min(z) and

H21,min(z). Figure 3 shows a system arrangement to ob-

tain H11,min(z) and H21,min(z) by using adaptive filters.

First, the transfer functions of D11(z) and D21(z) are mod-

eled beforehand. Next, as shown in Fig. 3, two adaptive fil-

ters Ĥ11,n(z), Ĥ21,n(z) are connected to the outputs of the
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H1L(z), H1R(z) : Linear inverse filters 

D1L(z), D1R(z) : First order Volterra filters of loudspeakers 

D2L(z1,z2), D2R(z1,z2) : Second order Volterra filters of loudspeakers 

D2L(z1,z2), D2R(z1,z2) : Models of D2L and D2R

∆ : Inverse modeling delay 

H1L(z)
z(n)

y1(n)
+
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D1L(z)

D2L (z1,z2)

+

z-∆
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^

^

D2L(z1,z2)

H1R(z)
+
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^
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D2R(z1,z2)

+ +

y2(n)

^ (z1,z2) (z1,z2)

Fig. 4. Block diagram of the proposed linearization system

using the MINT.

modeled transfer functions. Finally, the coefficients of the

two adaptive filters are updated as minimizing the following

error signal.

e(n) = x(n − ∆) − y(n) (6)

With the above procedure, you can obtain the filters to real-

ize exact linear inverse filtering.

3.2. Linearization System Using MINT

In this section, we introduce a system arrangement to apply

the MINT to the linearization system, which can linearize

nonlinear systems.

Figure 4 shows the block diagram of the proposed sys-

tem. In Fig. 4, H11(z) and H21(z) are FIR filters in the

MINT as explained in the previous section. The relation of

these filters is shown in the following equation again.

D11(z)H11(z) + D21(z)H21(z) = z−∆ (7)

Hence, the second-order nonlinear property of the whole

system in Fig. 4 is represented by

{D12(z1, z2) + D22(z1, z2)}z−∆

−{D11(z)H11(z) + D21(z)H21(z)}
·{D̂12(z1, z2) + D̂22(z1, z2)}

= z−∆{D12(z1, z2) + D22(z1, z2)
−D̂12(z1, z2) − D̂22(z1, z2)} (8)

If

D12(z1, z2) = D̂12(z1, z2), D22(z1, z2) = D̂22(z1, z2),
(9)

Table 1. Experiment conditions

Sampling frequency 44100[Hz]

Tap length of D1L(z) 512

Tap length of D1R(z) 512

Tap length of H1L(z) 511

Tap length of H1R(z) 511

Tap length of D−1
1 (z) 2048

Tap length of 2nd-order models 256

Delay of the proposed system 256

Delay of the conventional system 1024

Input Voltage 6.0V

Loudspeaker system MM-SP102SV

Anechoic room

SR

SL

C

0.60m

Distance between SR and SL: 0.10m

0.30m

Reflectors

Fig. 5. Experimental environment

that is, the second-order Volterra kernels of two loudspeak-

ers are identified accurately, the nonlinear distortion can be

compensated completely.

4. EXPERIMENTAL RESULTS

To verify the applicability of the proposed method, some

experiments were conducted. Table 1 shows experimental

conditions. We identified linear and nonlinear characteris-

tics of two loudspeakers in order to conduct compensation

experiments. Figure 5 shows experimental environment.

Figures 6∼8 show harmonic distortions and intermodula-

tion distortions, respectively.

These figures show that the proposed compensation method

can reduce more nonlinear distortions than the conventional

one. This is because the proposed method uses the MINT

and can consequently realize the exact linear inverse filter-

ing. It can be also seen from Table 1 that the proposed

method has low computational complexity and short delay

compared with the conventional one. Hence, the proposed

method also has an advantage on system realization.
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Fig. 6. Compensation results of harmonic distortions
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Fig. 7. Compensation results of intermodulation distortions
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Fig. 8. Compensation results of intermodulation distortions
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5. CONCLUSIONS

In this paper, we have proposed a novel linearization system

using the MINT. Since exact inverse filtering can be realized

by using the MINT, the proposed method has high com-

pensation ability than the conventional one. Moreover, the

whole computational complexity of the proposed method is

half as large as that of the conventional one and the system

delay is also small. Hence, the proposed method is efficient

for system realization.
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