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ABSTRACT

The main idea of the paper is to replace the covariance ma-
trix involved in TUCKALS3 algorithm with the fourth order
cumulant slice matrix of the data tensor n-mode vectors in
order to eliminate the Gaussian components of the additive
noise. The good qualitative results of this new multi-mode
filtering method are shown in the case of correlated noise
reduction in a color image and a polarized seismic wave,
modelled by third order tensors.

1. INTRODUCTION

In the context of an additive multidimensional white Gaus-
sian noise, a new concept of multi-mode (MM) filtering
of multidimensional and multicomponent signals, such as
color or multispectral images, or polarized seismic waves,
modelled by higher order tensors [1], has been proposed in
[6, 8, 9].

In these studies, the measurement of a multidimensional
signal X ∈ R

I1×I2···×IN by multicomponent sensors with
additive white Gaussian noise Nw, statistically independent
from the signal, results in data tensor: R = X + Nw. The
estimation of desired signal X thanks to a MM filtering of
noisy data tensor R [8, 9] can be written as follows:

X̂ = R×1 H(1) · · · ×N H(N), (1)

in which, each n-mode of a N th order noisy data tensor R
is filtered by a matrix Hn ∈ R

In×In called n-mode filter
by means of a multilinear algebra operator called ”n-mode
product”, and denoted by ×n [3].

In these methods, in extension to the classical matrix
filtering methods [4] to data tensors, n-mode filters Hn

are imposed to be projectors on the Kn-dimensional n-
mode signal subspace. Their determination lies either on
the rank-(K1, . . . KN ) troncature of the Higher Order SVD
(HOSVD-(K1, . . . KN )) or on lower rank-(K1, . . . KN )
tensor approximation (LRTA-(K1, . . . KN ) ) [2, 3], both
of which are based on TUKER3 tensor decomposition [10]
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that generalises the matrix SVD. The achievement of LRTA-
(K1, . . . KN ) needs a numerical iterative process based
on an Alternative Least Square (ALS) optimization, called
TUCKALS3 algorithm [5]. By construction, the LRTA-
(K1, . . . KN ) is a process that enables to achieve a multi-
mode (MM) Principal Component Analysis (PCA) [5], and
the HOSVD-(K1, . . . KN ) can be considered as an approx-
imation of the LRTA-(K1, . . . KN ) since it consists of the
initialization step of TUCKALS3 algorithm [3, 5].

In this paper, we propose to improve the MM-PCA based
filtering in the case of an additive multidimensional corre-
lated Gaussian noise, thanks to the fourth order cumulants,
in order to eliminate the white Gaussian component of the
noise. In section 2, we present TUCKALS3 algorithm on
which lies the MM-PCA based filtering, and stress how this
algorithm is based on second order statistics. In section 3
an improvement of the multi-mode filtering is proposed by
replacing covariance matrix involved in TUCKALS3 algo-
rithm by the associated fourth order cumulant. The good
performances of this improved MM-PCA based filtering
with fourth order cumulants are shown in section 4, in the
case of additive correlated Gaussian noise.

2. RECALLS ON MM PCA

2.1. TUCKALS3 algorithm for LRTA-(K1, . . . , KN )
and MM PCA

The TUCKALS3 Alternative Least Square algorithm [5]
that can be summarized in the following steps:

1. initialisation k = 0:

Initial projectors P
(n)
0 are obtained thanks to tensor R

HOSVD truncation [3, 5]. ∀n = 1, . . . N , P
(n)
0 =

U
(n)
0 U

(n)T

0 . U
(n)
0 is the matrix of the Kn left singular

vectors associated with the Kn largest singular values
of tensor R n-mode unfolding matrix Rn [3].

2. ALS loop: while ‖R − Bk‖2
F > ε, ε > 0 prior fixed

threshold,

(a) for n = 1 to N :
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i. B(n),k = R×1 P
(1)
k+1 · · ·×n−1 P

(n−1)
k+1 ×n+1

P
(n+1)
k ×N P

(N)
k ;

ii. n-mode unfold B(n),k into matrix B
(n),k
n =

Rn(P (1)
k+1⊗· · ·P (n−1)

k+1 ⊗P
(n+1)
k · · ·⊗P

(N)
k );

iii. compute matrix C(n),k = B
(n),k
n RT

n ;
iv. process C(n),k EVD, put the Kn eigenvec-

tors associated with the Kn largest eigenval-
ues into U

(n)
k+1 ∈ R

In×Kn ;

v. compute P
(n)
k+1 = U

(n)
k+1U

(n)T

k+1 ;

(b) compute Bk+1 = R×1 P
(1)
k+1 · · · ×N P

(N)
k+1, k ←

k + 1.

3. output: Bkstop = R ×1 P
(1)
kstop

· · · ×N P
(N)
kstop

, the best
lower rang-(K1, . . . , KN ) approximation of R.

The symbol ⊗ denotes the Kronecker product.

2.2. Second order statistics in TUCKALS3 algorithm

It is possible to give a statistical sense to matrix C(n),k

from step 2(a)iii. Let’s define by b(n),k
j , j = 1, . . . Mn,

with: Mn = I1 · · · In−1In+1 · · · IN , the n-mode vec-
tors of tensor B(n),k, i.e. n-mode unfolding matrix
B

(n),k
n column vectors. Let’s define as well by r(n)

j ,
j = 1, . . . Mn, the n-mode vectors of tensor R. Ma-
trix C(n),k = B

(n),k
n RT

n can be written as: C(n),k =
[b(n),k

1 , . . . ,b(n),k
Mn

][r(n)
1 , . . . , r(n)

Mn
]T =

∑Mn

j=1 b(n),k
j r(n)T

j .
As a consequence, up to the multiplicative factor 1

Mn
,

matrix C(n),k is an estimation of the covariance matrix be-
tween data tensor R n-mode vectors and tensor B(n),k n-
mode vectors.

Considering, in the previous expression of C(n),k, that
{r(n)

j , j = 1, . . . Mn}, and {b(n),k
j , j = 1, . . . Mn} are the

Mn realizations of two random vectors r(n) and b(n),k asso-
ciated respectively with the n-mode vectors of data tensors
R and B(n),k, matrix C(n),k can be written as a second or-
der moment: C(n),k = E[b(n),kr(n)T

], where E[·] denotes
the expectation operator.

Moreover, the Kn eigenvectors associated with the
largest eigenvalues of matrix C(n),k from which projector
P

(n)
k+1 is built (at step 2(a)v) are the mutual principal compo-

nents of tensor R and tensor B(n),k n-mode vectors. Thus
the LRTA-(K1, . . . , KN ) of data tensorR consists of a prin-
cipal component analysis processed simultaneously on ev-
ery n-mode.

3. IMPROVEMENT OF THE MM FILTERING
USING FOURTH ORDER CUMULANT

In practice the noise whiteness and gaussianity is not always
fulfilled. The use of higher order statistics consists of a clas-

sical means to eliminate the noise Gaussian components [7].

3.1. Fourth order cumulants

As remarked in section 2.2, matrix C(n),k, at step 2(a)iii and
TUCKALS3 algorithm kth iteration, is defined as a second
order moment. It can be replaced by a fourth order cumu-
lant [7]: C(n),k = Cum(b(n),k,b(n),kT

, r(n), r(n)T

). In
practice, in order to reduce the computational load, a cumu-
lant slice matrix of C(n),k can be computed. The cumulant
slice matrix associated with the first component of vector
b(n),k, is given by the following (In×In)-hermitian matrix
[7, 11]: C(n),k

1 = Cum(b(n),k
1 , b

(n),k
1 , r(n), r(n)T

).
The generic (i, j)-term of cumulant slice C(n),k

1 ex-

pressed with the expectation operator is: C(n),k
1ij =

E[b(n),k2

1 r
(n)
i r

(n)
j ] − 2E[b(n),k

1 r
(n)
i ]E[b(n),k

1 r
(n)
j ].

The practical estimation of C(n),k
1 uses the Mn realiza-

tions of random vectors r(n) and b(n),k. Defining by b
(n),k
ij

and r
(n)
ij the (i, j)-term of B

(n),k
n and Rn n-mode unfolding

matrices, the estimation of C(n),k
1ij term is given by:

C(n),k
1ij = 1

Mn
(
∑Mn

p=1 b
(n),k2

1p r
(n)
ip r

(n)
jp )

− 2
M2

n
(
∑Mn

p=1 b
(n),k
1p r

(n)
ip )(

∑Mn

p=1 b
(n),k
1p r

(n)
jp )

(2)

Although cumulant slice matrix C(n),k
1 may not contain

strictly the same information as the whole cumulant tensor
C(n),k, as shown in the next section simulations on figures
1(e) and 2(m), from an experimental point of view, the re-
sults given by the MM-PCA based filtering improved either
by C(n),k

1 or by C(n),k do not present a large difference.

3.2. Proposed algorithm

When the cumulant slice matrix C(n),k
1 is used, in step

2(a)iv of TUCKALS3 algorithm, the lower rank-Kn ap-
proximation of matrix C(n),k, that leads to matrix U

(n)
k+1,

is replaced by the one of C(n),k
1 .

When the whole cumulant tensor C(n),k is used, ma-
trix U

(n)
k+1 is determined by computing tensor C(n),k LRTA-

(Kn, Kn, Kn, Kn), which generalize the matrix lower rank
approximation [3], given by : C(n),k(Kn, Kn, Kn, Kn) =
S ×1 U

(n)
k+1 · · · ×4 U

(n)
k+1, where S ∈ R

Kn×Kn×Kn×Kn is
the core tensor.

TUCKALS3 algorithm initialization step can also be
modified by using the fourth order cumulant slice matrix.
The initialization with the whole fourth order cumulant ten-
sor can be obtained straightforwardly. For n = 1, . . . , N ,
matrice U

(n)
0 , with which initial projector P

(n)
0 is built, is

the matrix of the Kn eigenvectors associated with hermi-
tian matrix RnRT

n . Hence, it also consists of an estimation
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of data tensor R n-mode vector covariance matrix. In the
proposed method, matrix RnRT

n is replaced with C(n),0
1 , the

fourth-order cumulant slice of data tensor R n-mode vec-
tors, which is estimated thanks to relation (2) by replacing
element b

(n),k
1p by element r

(n)
1p , ∀p = 1, . . . , Mn.

(a) initial image (b) SNR=-2.1dB

(c) LRTA-(30,30,2) (d) LRTAC1 -(30,30,2)
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Fig. 1. ’Baboon’ standard (256 × 256 × 3)-image

4. SIMULATION RESULTS

In the following simulations, the proposed method is ap-
plied for noise reduction in a color image and a polarized
seismic wave, both of which can be modelled by a third or-
der tensor R = X + N . N is considered as a correlated
Gaussian noise that can be written as N = Nw ×1 W (1)×2

W (2) ×3 W (3), where Nw is a white Gaussian noise Nw,
statistically independent from the signal, and ∀n = 1, 2, 3,
W (n) are weighting matrices which make the correlation
between the n-modes.

The estimated signal tensor is X̂ = R×1P (1)×2P (2)×3

P (3), in which, ∀n = 1, 2, 3, P (n) is the orthogonal pro-
jector on the Kn dimensional n-mode signal subspace, ob-

tained after convergence of the proposed improved TUCK-
ALS3 algorithm thanks to the fourth-order cumulant slice
matrix, noted by LRTAC1-(K1, K2, K3). If the whole cu-
mulant tensor is used, it is noted by LRTAC-(K1, K2, K3).

In order to a posteriori verify the estimated image qual-
ity we propose to use the Relative Quadratic Error criterion
(RQE) defined thanks to the tensor Frobenius Norm [3] by:

RQE(X̂ ) = ‖X̂−X‖2
F

‖X‖2
F

. The RQE enables a qualitative com-
parison between the classical LRTA-(K1, K2, K3) and the
proposed LRTAC1-(K1, K2, K3) based MM filterings.

Color image - Let’s consider ”Baboon” standard color im-
age (Fig. 1(a)) modelled by tensor X ∈ R

256×256×3. We
suppose the initial n-mode ranks of this image known and
fixed at (K1, K2, K3)=(30, 30, 2). Noisy image R, in which

correlated noise N is such that SNR = 10log( ‖X‖2
F

‖N‖2
F

) =
2.1dB, is represented in Fig. 1(b). The classical LRTA-
(30, 30, 2) based MM filtering of noisy image R results in
estimated image represented in Fig. 1(c), in which the cor-
related noise has almost not been removed. The proposed
LRTAC1-(30, 30, 2) based MM filtering of R results in es-
timated image represented in Fig. 1(d), which has a greatly
better quality compared to previous image 1(c). Finally, the
evolution of the RQE with respect to the SNR(dB) for the
LRTAC1, the LRTAC and the classical LRTA based MM
filterings, is represented in Fig. 1(e). It shows that the NQE
obtained with the proposed method is always lower than the
one obtained with the classical MM filtering.

Polarized seismic Wave - We consider now, a polarized
seismic plane wave whose wave-front is parallel to the an-
tenna plane, modelled by tensor X ∈ R

10×200×3. The lin-
ear antenna is composed of 10 sensors, and the time sam-
pling on each sensor represents 200 samples. The wave di-
rection of propagation is supposed orthogonal to the antenna
plane. The X , Y and Z-polarisation components are shown
respectively on Figures 2(a)-2(c), and represent a triangular
impulse with the same temporal length but different ampli-
tude. The three polarisation components of noisy signal R,
in which correlated noise N is such that SNR = −10dB,
are shown respectively on Figures 2(d)-2(f). As shown in
Figures 2(g)-2(g), the classical LRTA-(1, 1, 1) based MM
filtering of R is not able to remove the correlated noise.
On the opposite, as shown in Figures 2(j)-2(l), the proposed
LRTAC1-(1, 1, 1) based MM filtering of R leads to a per-
fect estimation of the initial signal. The good performances
of the proposed LRTAC1-(1, 1, 1) based MM filtering is
confirmed by the evolution of the RQE with respect to the
SNR(dB) shown in Fig 2(m). All along the SNR range, the
RQE is null with the proposed method where as the RQE in-
creases when the SNR decreases, for the classical method.

Note also that, for both examples, the RQEs obtained
with the LRTAC1-(K1, K2, K3) and with the LRTAC-
(K1, K2, K3) based MM filtering do not present a large dif-
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ference, whatever the SNR.
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(c) channel 3 initial
signal
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(d) correlated Gaus-
sian noise
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(g) LRTA-(1, 1, 1)
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(h) LRTA-(1, 1, 1)
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(i) LRTA-(1, 1, 1)
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(j) LRTAC1-(1, 1, 1)
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(k) LRTAC1-(1, 1, 1)
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(l) LRTAC1-(1, 1, 1)
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Fig. 2. Polarized plane seismic wave for whose wave-front
is parallel to the antenna plane.

5. CONCLUSION

The main idea of the paper is to replace the covariance ma-
trix involved in TUCKALS3 algorithm with the fourth or-

der cumulant slice matrix of the data tensor n-mode vectors
in order to eliminate the Gaussian components of the addi-
tive noise and improve the classical MM filtering based on
LRTA-(K1, . . . , KN ). The good qualitative results of this
new multi-mode filtering method are shown in the case of
noise reduction in a color image and a polarized seismic
wave.

6. REFERENCES

[1] P. Comon. Tensor Decompositions. Mathematics
in Signal Processing V, J. G. McWhirter and I. K.
Proudler edition, 2002.

[2] L. De Lathauwer, B. De Moor, and J. Vandewalle. A
multilinear singular value decomposition. SIAM Jour-
nal on Matrix Analysis and Applications, 21:1253–
1278, April 2000.

[3] L. De Lathauwer, B. De Moor, and J. Vandewalle. On
the best rank-(r1, . . . , rN ) approximation of higher-
order tensors. SIAM Journal on Matrix Analysis and
Applications, 21:1324–1342, April 2000.

[4] M. Hemon and D. Mace. The use of Karhunen-Loeve
transform in seismic data prospecting. Geophysical
Prospecting, 26:600–626, 1978.

[5] P.M. Kroonenberg. Three-mode principal component
analysis. DSWO press, Leiden, 1983.

[6] N. Le Bihan and G. Ginolhac. Subspace methods on
3d array. In Workshop on Physics in Signal and Image
Processing, pages 359–364, Marseille, France, Jan-
uary 2001.

[7] J.M. Mendel. Tutorial on higher order statistics (spec-
tra) in signal processing and system theory: theoretical
results and some applications. In Proc. of the IEEE,
volume 79, pages 278–305, March 1991.

[8] D. Muti and S. Bourennane. Multidimensional estima-
tion based on a tensor decomposition. In IEEE Work-
shop on Statistical Signal Processing, St Louis, Mis-
souri USA, September 28 - October 1, 2003.

[9] D. Muti and S. Bourennane. Multidimensional sig-
nal processing using lower rank tensor approximation.
In IEEE Int. Conf. on Accoustics, Systems and Signal
Processing, Hong Kong, China, April 6-10, 2003.

[10] L.R. Tucker. Some mathematical notes on three-mode
factor analysis. Psychometrika, 31:279–311, 1966.

[11] N. Yuen and B. Friedlander. DOA in multipath: an
approach using fourth order cumulant. IEEE Trans.
on Signal Processing, 45(5):1253–63, 1997.

IV - 452

➡ ➠


