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ABSTRACT

This article presents a problem encountered in nuclear phy-
sics, queuing theory and point processes. The studied sig-
nal consists of pulses of random length and energy, possibly
sampled, whose time occurrences are points of an homoge-
nous Poisson process. Incoming pulses can combine into
pile-ups, which results into a biased estimation of the den-
sity of lengths and energies. We introduce a model based
on two marked point processes and derive an analytical re-
lation between the probability density function (pdf) of the
observed pile-ups and the pdf of the pulses, that leads to
an algorithm for pile-up correction, in both cases of a con-
tinuous time and discrete time signals. Simulations show
cancellation of the pile-up effect and prove efficiency of the
algorithms in gamma spectrometry.

1. INTRODUCTION

1.1. Description of the Type II Counter Problem

We consider a signal composed of pulses, each pulse be-
ing characterized by its length U , its energy E and its oc-
currence time T . We assume that occurrence times are the
points of an homogenous Poisson process, and we are inter-
ested in the pdf of (U, E). However, since each pulse has a
strictly positive length, some pulses can combine into pile-
ups ; therefore, random variables U and E are not directly
observable, instead we only have access to lengths L and
energies M of pile-ups. This context is refered in [1] as the
Type II Counter Problem ; Other references to this problem
can be found in [2].

Figure 1 illustrates this problem : assume that Tn is the
arrival time of the n-th pulse, Un its length and En its en-
ergy. When the n-th pulse arrives, its energy is recorded,
and thus we observe (Un, En). On the other hand, the n+2-
th pulse begins before the n+1-th pulse ends ; we cannot ob-
serve in that case neither (Un+1, En+1) nor (Un+2, En+2),
but (Ln+1, Mn+1) = (Tn+2+Un+2−Tn+1, En+1+En+2).
We follow the terminology used in physics and call this phe-
nomenon the pile-up effect. Our goal is to estimate the pdf

t
�

�input signal

...............................
..............
............
...........
..........
..........
..........
..........
..........
.........
..........
.........
..........
..........
..........
..........
...........
......................................................................................................................................................................................................................................... ...............................

..............
.............
...........
..........
...........
..........
..........
..........
.........
..........
..........
..........
..........
...........
...........
............
.............................................................................................................................

...........
............
..........
..........
..........
...........
............
..........................................................................................................................................................................................................................................................................................................

............
..........
.........
........
........
........
........
.......
........
......
.......
.......
........
.......
.......
.......
.......
........
......
.......
........
.........
........
........
...................................................................................................................................................................................................................................................................................................

...........
..........
.........
........
........
........
.......
........
.......
........
.......
........
........
.........
.......
........
.......
........
........
........
..........
............

..................................................................................................................................................................................................................................................

Tn Tn+1 Tn+2

� �
Un

� �

Un+2

� �

Un+1

Fig. 1. Illustration of Type II Counter Problem : input signal
with arrival times Ti and service times Ui, i = n, . . . , n+2.

of (U, E), given N pile-ups {(li, mi)}1≤i≤N (the exact re-
lation between pulses and pile-ups is given in [3]).

Type II Counter Problem is encountered in nuclear phy-
sics, particularly in γ or X spectrometry. In this applica-
tion a radioactive source emits randomly photons following
a Poisson process ; a dispositive based on charge collection
changes the energy of a detected photon into an electrical
pulse, whose integral is proportional to the energy of the
photon. The physicist is interested in the distribution of the
energy of the incoming photons, that is the pdf of E.

1.2. State of the art

The problem of pile-ups in the case of an homogenous Pois-
son process marked by a single random variable has been
well studied in queuing theory where Un represents the n-
th busy period of a server ; results of [1] and [4] give a
relation for the Laplace transform of the pdf of Un and es-
tablish an estimate of the cumulative distribution function
(cdf) of Un, using the formalism of the queuing theory and
the M/G/∞ model. However, the lengths of pulses are less
used in spectrometry than their energies.

In papers dealing specifically with Type II Counter Pro-
blem, such as [5], we only consider the energy En as the
n-th mark of the point Tn, and have results concerning the
pdf of pile-ups {Mn}, but not the distribution of interest.
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Our approach is motivated by the experimental obser-
vation that lengths and energies of the detected pulses are
not independent, and therefore to combine the aspects of
queuing theory with the spectrometry point of view. We can
show that the pdf of the lengths and energies of pile-ups,
denoted by ν, can be related to the pdf of the lengths and
energies of pulses, denoted by µ.

1.3. Purpose and organization

This paper presents relations and algorithms to compensate
the pile-up effect for both continuous-time and discrete-time
signals. Section 2 introduces the model and an analytical
formula between the two pdfs ; a formula for discrete sig-
nals is also presented. Section 2 gives the algorithms de-
duced from the main theorems. Simulations and results are
presented in section 3.

2. ASSUMPTIONS AND MAIN RESULTS

2.1. Notations

Denote by λ the intensity of the underlying Poisson pro-
cess. Denote by Un, En, Tn respectively the length, the en-
ergy and the occurence time of the n-th pulse. We define
the n-th idle period as the period between the end of the
n-th pile-up and the beginning of the n + 1-th pile-up. De-
note by Ln, Mn, On respectively the length, the energy and
the occurrence time of the n-th pile-up. Denote by Ēt the
cumulative energy at time t, that is :

Ēt =
∑

{i;Ti∈[0;t]}
Ei.

We also assume there is no pulse at time t = 0.

2.2. Continuous case

Denote by st the value of the input signal at time t, and as-
sume that st > 0 when at least a pulse occurs, and st = 0 in
an idle period. The following theorem, which relates µ to ν,
is proved by computing the probability P(st = 0 ; Ēt ≤ e)
conditioning by the number of pulses in [0; t], then condi-
tioning by the number of pile-ups in [0; t] :

Theorem 2.1 Under assumptions of Sections 2.1 and 2.2,
we have :∫ ∞

0

e−(λ+s)t exp
(

λ

∫ ∞

0

e−pvk(t, v) dv

)
dt

=

(
s + λ − λ

∫
R

2
+

e−st−pvν(t, v) dt dv

)−1

, (1)

where

k(t, v) =
∫ t

0

{∫ a

0

µ(u, v) du

}
da.

Due to Theorem 2.1, we propose in Table 1 an algorithm
based on equation (1) for pile-up correction in the continu-
ous case.

(i) Given the observed samples, compute a kernel
estimate of ν.

(ii) Compute the right term of (1).
(iii) Invert numerically the Laplace transforms in

the left term of (1), given numerical samples
from (ii) and deduce k(·, ·).

(iv) Deduce the pdf of interest from k(·, ·).
Table 1. Continuous version of the algorithm

Steps (i) to (iii) of the algorithm return the double cdf
following the first dimension of µ. It seems natural to de-
duce the distribution of interest by a double numerical de-
rivation in step (iv). However, since the integral is a com-
pact operator, derivation (and a fortiori double derivation)
is an ill-posed problem, that is its solution is very sensitive
to initial conditions or observations. Another point is that
an unconstrained step of double derivation could lead to an
estimate which is not a probability density function (for ex-
ample taking negative values). It is therefore necessary to
solve both problems.

Denote by D the differentiation operator. In order to
solve both problems (positivity and integration to 1), we
replace the operation D2k by the constrained optimization
step :

arg min
f≥0

||(D#)2f − k||2 (2)

where D# is the pseudo-inverse of D and ||.|| is the eu-
clidian norm. In practical applications, k is a matrix, so
optimization (2) can be solved by using Lawson-Hanson al-
gorithm. A normalization can be done after this step, to
ensure the integration to 1 of the result.

2.3. Discrete case

In the case of sampled and quantified signals, we are not in-
terested directly to µ but to its discrete version. The event
{st = 0 ; Ēt ≤ e} cannot be directly observed. It is there-
fore necessary to adapt notations. For convenience, the sam-
pling period Te will be set to 1.

Denote by sn the value of the input signal at the n-th
sampling time. As in 2.2 assume that sn > 0 when at least a
pulse occurs, and sn = 0 in an idle period. We also assume
there is no pulse at time t = 0. Denote by α = e−λ. We
say that a transition occurs at time n if and only if sn−1 = 0
and sn > 0. Remark that random variables introduced in
2.1 are now discrete.

Denote by b the probability distribution of the the pile-
ups, and by p the probability distribution of the pulses, that
is for all integers n and e :
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Fig. 2. Pile-ups and pile-up correction results in the discrete case

bn,e = P(L = n ∩ M = e) (3)

pn,e = P(U = n ∩ E = e) (4)

Finally, denote by B the generating function associated
with b. It is possible to express P(sn = 0; Ēn = e) with re-
spect to (3) using a renewal argument (see [6]). Moreover,
this probability can be computed using (4) and usual prop-
erties of the Poisson process. These considerations lead to a
theorem, which relates the generating functions of b and p :

Theorem 2.2 Under assumptions of Section 2.3, we have :

∞∑
n=0

zn(αn−Kn(s)) =
1

1 − (αz + (1 − α)zB(z, s)))
(5)

where

Kn(s) =
∞∑

i=1

kn,is
i and kn,e

∆=
n∑

j=1

j−1∑
m=1

pm,e.

We therefore propose in Table 2 an algorithm of pile-up
correction in the discrete case based on equation (5). As in
the continuous case, step (iv’) of the algorithm is done by a
constrained optimization algorithm and a normalization.

Proofs of Theorem 2.1 and Theorem 2.2 can be found in
[3].

(i’) Given the observed samples, compute an his-
togram of b.

(ii’) Recursively compute the right term of (5) in
power series.

(iii’) Compare the obtained power series with the
left term of (5) and deduce kn,e.

(iv’) Deduce the probability distribution from kn,e.

Table 2. Discrete version of the algorithm

3. RESULTS AND DISCUSSION

3.1. Experimental protocol

We consider N = 1.5 × 108 samples {(li, mi)}1≤i≤N ob-
tained recursively from drawings of (U, E). In order to stay
close to nuclear physics applications, the density µ is

µ(x, y) ∝ Γ

(
2

(
10 +

10y

512

)2

, 10 +
10y

512

)
(x) × g(y),

with

g(y) = 102g100,4(y)+5g225,4(y)+10(ee− y2
10000 −1)+10−3,

gm,σ2 being the gaussian pdf with mean m and variance σ2

and Γ(α, β) being the gamma pdf with parameters α and β.
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Fig. 3. Absolute error between initial density and its esti-
mate

Since we are interested in the distribution of the ener-
gies, we also present the projection following the first di-
mension of the considered bidimensional densities. Figure
2-a is the contour representation of the initial pdf µ, and
Figure 2-d the projection following the first dimension of
this pdf. Figure 2-b represents the histogram deduced from
the samples {(li, mi)}1≤i≤N , and Figure 2-e its projection.
Observe that the spikes and the continuum of the density
both combine into pile-ups. We then apply the algorithms
described in Section 2.

3.2. Results for pile-up correction algorithms

The density deduced from the algorithm of Table 2 is pre-
sented in Figure 2-c and its projection in Figure 2-f. Com-
pared to the initial pdf, the estimate is quite sharp , even
if the second gaussian cannot be easily distinguished from
other pile-ups. Figure 3 presents a comparison between
the ideal pdf µ and its estimate µ̂ deduced from our algo-
rithm, the number of samples {(li, mi)}1≤i≤N varying. We
choose two norms (the spectral radius and the infinity norm)
as a criterion of sharpness. We compute in both cases the
norm of µ−µ̂. Figure 3 proves the efficiency of the method,
and gives indication for the consistency of the estimate de-
duced from our algorithm.

Figure 4 presents the density estimate obtained by the
the algorithm described in Table 1 and its marginal distri-
bution. Consistency of the method following the number of
points used in the numerical inversion of the Laplace trans-
form should be investigated in future papers.

4. CONCLUSIONS AND PERSPECTIVES

In this paper we introduced a model based on two marked
points processes that leads to a relation between two den-
sities, one of them being of interest for the physicists in γ
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Fig. 4. Density estimate with the continuous version of the
algorithm

spectrometry. We exhibit algorithms to compute an estimate
of this density in both case of continuous-time and discrete-
time signals. This algorithm showed interesting results on
generated densities. A problem associated to this should be
to consider the case when the input Poisson process is not
homogenous anymore. This question should be investigated
in future papers.
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