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ABSTRACT

This paper presents the Successive Mean Quantization Trans-
form (SMQT). The transform reveals the organization or
structure of the data and removes properties such as gain
and bias. The transform is described and applied in speech
processing and image processing. The SMQT is considered
as an extra processing step for the mel frequency cepstral
coefficients commonly used in speech recognition. In im-
age processing the transform is applied in automatic image
enhancement and dynamic range compression.

1. INTRODUCTION

A reliable and robust feature extraction is important for pat-
tern recognition tasks. Problems of using different sensors
and Analog-to-Digital (A/D) converters will have an impact
on the performance of the system. These discrepancies may
occur due to difference in the gain and bias in the signals.
Another possibility is that the structure or the shape of the
signal changes. The aim with the SMQT is to remove the
disparity between sensors due to gain and bias. Addition-
ally, the extraction of the structure of the data should be
done in an efficient manner. This structure extraction prob-
lem can be seen as the problem of dynamic range compres-
sion [1]. The finding of structures in data has been proposed
before, for example the Census Transform which extracts a
binary structure from an image [2]. More recently the Mod-
ified Census Transform [3] emerged; this transform has sim-
ilarities to a first level SMQT. However, these techniques re-
veal only one bit structures or structure kernels. The SMQT
can be used to extend the structure representation to an ar-
bitrary predefined number of bits on arbitrary dimensional
data. This will be shown by applying the SMQT in both
speech and image processing.

In speech recognition the Mel Frequency Cepstral Co-
efficients (MFCC) are commonly used as front end and the
Hidden Markov Model (HMM) for pattern recognition [4,
5]. The mismatch between training and testing is a common
problem. Techniques have been proposed for adjusting the

parameters in Hidden Markov Models (HMMs) by Parallel
Model Combination (PMC) to overcome this problem. For
example, the Jacobian adaptation, fast PMC, PCA-PMC,
log-add approximation, log-normal approximation, numer-
ical integration and weighted PMC [6, 7]. These operations
are necessary even if the signal changes its bias or gain
since a gain or bias change in the signal will propagate to
the MFCC. Hence, a SMQT as an extra step in the MFCC
calculation will yield a separation between the structure and
the level in the signal. These level-free coefficients, denoted
SMQT-MFCC, will be compared with standard MFCC.

Producing digital images that render contrast and detail
well is a strong requirement in several areas, such as remote
sensing, biomedical image analysis and fault detection [8].
Performing these tasks automatically without human inter-
vention is a particularly hard task in image processing. Dif-
ferent approaches and techniques have been suggested for
this problem [8, 9, 10, 11]. The SMQT uses an approach
that performs an automatic structural breakdown of infor-
mation. This operation can be seen as a progressive focus
on the details in an image.

2. DESCRIPTION OF THE SMQT

Let x be a data point and D(x) be a set of |D(x)| = D data
points. The value of a data point will be denoted V(x). The
form of the data points can be arbitrary, that is D(x) could
be a vector, a matrix or some arbitrary form. The SMQT has
only one parameter input, the level L (indirectly it will also
have the number of data points D as an important input).
The output set from the transform is denoted M(x) which
has the same form as the input, i.e. if D(x) is a matrix then
M(x) is also a matrix of same size. The transform of level
L from D(x) to M(x) will be denoted

SMQTL : D(x) → M(x) (1)

The SMQTL function can be described by a binary tree
where the vertices are Mean Quantization Units (MQUs).
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A MQU consists of three steps, a mean calculation, a quan-
tization and a split of the input set.

The first step of the MQU finds the mean of the data,
denoted V(x), according to

V(x) =
1
|D|

∑
x∈D

V(x) (2)

The second step uses the mean to quantize the values of data
points into {0, 1}. Let a comparison function be defined as

ξ
(
V(y),V(x)

)
=

{
1, if V(y) > V(x)
0, else

(3)

and let
⊗

denote concatenation, and then

U(x) =
⊗
y∈D

ξ
(
V(y),V(x)

)
(4)

is the mean quantized set. The set U(x) is the main output
from a MQU. The third step splits the input set into two
subsets

D0(x) = {x | V(x) ≤ V(x),∀x ∈ D}
D1(x) = {x | V(x) > V(x),∀x ∈ D} (5)

where D0(x) propagates left and D1(x) right in the binary
tree, see Fig. 1.
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MQU MQUMQU MQU

Fig. 1. The operation of one Mean Quantization Unit
(MQU).

The output set U(x) from a MQU is not a value or sim-
ilarity coefficient as in linear transforms. Instead, U(x) can
be interpreted as the structure of D(x). Hence, the MQU is
independent due to gain and bias adjustments of the input.

The MQU constitutes the main computing unit for the
SMQT. The first level transform, SMQT1, is based on the
output from a single MQU, where U is the output set at the
root node. The outputs in the binary tree need extended
notation. Let the output set from one MQU in the tree be

denoted U(l,n) where l = 1, 2, . . . , L is the current level and
n = 1, 2, . . . , 2(l−1) is the output number for the MQU at
level l, see Fig. 2.
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Fig. 2. The Successive Mean Quantization Transform
(SMQT) as a binary tree of Mean Quantization Units
(MQUs).

Weighting of the values of the data points in the U(l,n)

sets are performed and the final SMQTL is found by adding
the results. The weighting is performed by 2L−l at each
level l. Hence, the result for the SMQTL can be found as

M(x) = {x | V (x) =
∑L

l=1

∑2l−1

n=1 V
(
u(l,n)

) · 2L−l,

∀x ∈ M,∀u(n,l) ∈ U(l,n)}
(6)

As a consequence of this weighing the number of quanti-
zation levels, denoted QL, for a structure of level L will be
QL = 2L.

The MQU is insensitive due to gain and bias. The MQU
is the basic building block of the SMQT. Hence, inductively
the SMQT is also insensitive to gain and bias.

3. SMQT IN SPEECH PROCESSING

Acoustic mismatch between the training and test data de-
grades the performance of Automatic Speech Recognition
(ASR) systems [12]. The MFCC are frequently used as a
speech parametrization in speech recognizers. The MFCC
are calculated from speech frames, hence the mismatch is
directly affected by the disparity in these speech frames.
The difference between the frames can occur due to differ-
ent gain and bias in the speech signal. Another possible dif-
ference is that the structure or the shape of the speech frame
changes. The motivation for the Successive Mean Quan-
tization Transform - Mel Frequency Cepstral Coefficients
(SMQT-MFCC) is to remove the gain and bias disparity be-
tween training and testing. The basic steps for the calcula-
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tion of the MFCC and the SMQT-MFCC can be found in
Fig. 3.

Frame
Blocking

SMQT Windowing |FFT|2

Mel Scaled
Filterbank

LogarithmDCTLifter
Coefficients

Speech

Fig. 3. The steps from speech to coefficients by MFCC and
SMQT-MFCC.

A correctly band-limited speech signal sampled at 16
kHz is used as comparison between the MFCC and the SMQT-
MFCC. The speech comes from a male speaker pronounc-
ing the word “one”. This signal undergoes modifications by
gain, bias and additive white Gaussian noise at three Signal-
to-Noise (SNR) levels. The MFCC and SMQT-MFCC are
calculated for these cases, see Fig. 4. Speech frames of 20
ms are used and a SMQT8 is applied to the frames.
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Fig. 4. Comparison between MFCC and SMQT-MFCC. (A)
original speech signal s(n), (B) 4s(n), (C) s(n) + 0.5, (D)
s(n) + w20(n) where w20(n) is white Gaussian noise and
subindex indicates the SNR level in dB, (E) s(n) + w10(n)
and (F) s(n) + w0(n). Coefficients have been normalized
for better visualization.

.

The SMQT-MFCC have an exact match between (A),
(B) and (C) while the MFCC does not. This since the SMQT
is independent of gain and bias. However, both the SMQT-
MFCC and the MFCC are affected in different degrees by
the white Gaussian noise.

It should be emphasized that it is the separation between
the structure and the levels of a signal that can be useful in
speech processing. Hence, an augmentation of the SMQT-
MFCC with information about the level of the signal might
be desired.

4. SMQT IN IMAGE PROCESSING

Transforming a whole image at different levels gives an il-
lustrative description of the operation for the SMQT, see
Fig.5.

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

Fig. 5. Example of SMQT on whole image. (A) original
image, dynamic range 0-255 (8 bit). (B)-(I) corresponds to
SMQT1 − SMQT8 of image.

The level L in the SMQTL denotes the number of bits
used to describe the transformed image. Hence, a SMQT1

of the image has a one bit representation {0, 1} and a SMQT2

of the image has two bits {0, 1, 2, 3} see (B) and (C) re-
spectively. Choosing a level of the transform lower than the
number of bits in the original image yield a dynamic range
compressed image. A SMQT8 of an image, which has a
dynamic range represented by 8 bits, will yield an uncom-
pressed image with enhanced details. A comparison with a
histogram equalization [9] is conducted, see Fig. 6.

The histogram equalization has some problems with over-
saturation and artifacts in several areas area in the images.
Notice how the histogram equalized images have a tendency
to get washed out or unnatural. These effects do not occur,
or are very limited, in the SMQT enhanced images. The
SMQT also has less computational complexity and fewer
adjustments compared to more advanced enhancement tech-
niques such as [8, 10, 11].

5. CONCLUSIONS

This paper presents a new transform, denoted the succes-
sive mean quantization transform. The SMQT has proper-
ties that reveal the underlying organization or structure of
data. The transform extracts the structure in a robust man-
ner which makes it insensitive to changes in bias and gain
in the signal.
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Fig. 6. Top row original image, middle SMQT8 of image and bottom histogram equalization of image. Face images are
from Yale Face Database B [13]. Zooming in the pdf images is recommended for detail studies. Note the differences of the
forehead in the face images.

.

The transform has been applied as an extension of the
MFCC and the SMQT-MFCC are introduced. A compar-
ison between the MFCC and the SMQT-MFCC has been
conducted. The benefit of the SMQT-MFCC is that it ex-
tracts only the structure and ignores the level in the signal.
This implies that the SMQT-MFCC are robust to bias and
gain dissimilarities in speech signals. The transform has
also been applied for automatic enhancement of images.
A comparison with a histogram equalization has been per-
formed, which showed the advantage of the SMQT.
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