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Abstract— In this paper, we develop a new linear matrix
inequality (LMI) technique, which is practical for solutions
of the general trigonometric semi-infinite linear constraint
(TSIC) of competitive orders. Based on the new full LMI
characterization for the convex hull of a trigonometric curve,
it is shown that the semi-infinite optimization problem in-
volving TSIC can be solved by LMI optimization problem
with additional variables of dimension just n, the order of
the the trigonometric curve. Our solution method is very
robust which allows us to address almost all practical filter
design problems. Unlike most previous works involving several
complex mathematical tools, our derivation arguments are
based on simple results of the convex analysis and some formal
elementary transforms. Furthermore, many filter/filterbank
design problems can be reformulated as the optimization of
linear/convex quadratic objectives over the trigonometric semi-
infinite constraints (TSIC). Based on this reformulation, these
problems can be equivalently reduced to LMI optimization
problems with the minimal size. Our examples of designing
up to 1200-tap filters verifies the viability of our formulation.

I. INTRODUCTION

A trigonometric curve is the set

Ca,b := {(1, cos t, cos 2t, ..., cos nt)T :
cos t ∈ [cos a, cos b] ⊂ [−1, 1]} ⊂ Rn+1,

(1)

and its polar is defined as

C∗
a,b = {u ∈ Rn+1 : 〈u, v〉 ≥ 0 ∀ v ∈ Ca,b}. (2)

The trigonometric semi-infinite linear constraint (TSIC) in
variable x ∈ Rn̄

Ax + d ∈ C∗
a,b, A ∈ R(n+1)×n̄, d ∈ Rn+1 (3)

includes several interesting interpretations in signal process-
ing as a particular case. For instance, the particular case

x ∈ C∗
π,0 (4)

means that x = (x0, x1, ..., xn) is a positive real sequence:

H(ejω) :=
n∑

h=0

xh cos hω ≥ 0 ∀ ω ∈ [0, π]. (5)
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The constraint Ax + d ∈ C∗
π,0 also arises in problems such

as FIR energy compaction filer design, signal-adapted filter
banks etc. (see e.g. [6], [8] and references therein).
More generally, peak-error constraints [1] for frequency
responses of the linear phase filters are the particular cases
of (3): given a passband [0, ωp] ⊂ [0, π/2] and stopband
[ωs, π], the peak-error constraints in the passband and
stopband of a linear phase filer

H(z) = z−n[x0 +
1
2

n∑
i=1

xi(zi + z−i)] (6)

which are expressed as

|H(ejω) − e−jnω| < δp ∀ω ∈ [0, ωp]
|H(ejω)| < δs ∀ω ∈ [ωs, π] (7)

are indeed

x + (δp − 1)e1 ∈ C∗
ωp,0, −x + (δp + 1)e1 ∈ C∗

ωp,0,

x + δse1 ∈ C∗
π,ωs

,−x + δse1 ∈ C∗
π,ωs

,
(8)

respectively, where e1 = (1, 0, ..0) ∈ Rn+1.
The simplest and traditional treatment for the TSIC con-
straints (3) is just to replace it by a finite number of linear
constraints:

〈Ax + d, (1, cos ti, cos 2ti, ..., cos nti)T 〉 ≥ 0,
cos ti ∈ [cos a, cos b], i = 0, 1, 2, ...N.

(9)

Obviously, any feasible solution of these linear constraints
is not guaranteed to be a feasible one of the TSIC con-
straints. As mentioned in [6] no matter as such a set of
finite grid points {ti, i = 0, 1, ..., N} is chosen dense
on [b, a], linear constraints (9) cannot bring TSIC (3). On
the other hand, in the state-space setting for the filter
(5), the classical Kalman-Yakubovich-Popov lemma (see
e.g. [9]) can reformulate the particular positive constraint
(4) into (convex) linear matrix inequality (LMI) constraint
involving additional Lyapunov symmetric matrix variable
of dimension n(2n + 1).
Quite recently, LMI has been discovered as a powerful
tool for handling general TSIC (3) as well. It has been
established in [4] that TSIC (3) is characterized by LMI con-
straints involving two additional symmetric matrix variables
of dimension (n+1)(n+2)/2 and n(n+1)/2, respectively.
Usually the order 2n of the designed FIR filters is not small
in practical applications to attain good frequency response.
As a result, the dimension of the corresponding LMI
optimization problem may be very high (with more than
several thousands of additional variables), preventing them
from being efficiently and practically solvable by existing
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LMI solvers such as [10]. A much more efficient LMI
technique specialized for handling the particular positive
constraint (4) has been developed in [2]. A numerical result
has been provided in [2] for order n = 600 (for such
order n, as mentioned, the corresponding LMI formulation
[4] for (4) requires an additional variable of dimension
(n + 1)(n + 2)/2 = 180901). It has been also shown
in [5], [3] that the general TSIC (3) can be equivalently
transformed to the particular positive real constraint (4).
However, as recognized in [5], [3], the trouble there is
that the resulting LMI constraint is ill-posed even for very
moderate order n due the ill-condition of the used transform
matrix. It should be noted that the mentioned LMI based
formulation of [4] with much large dimensional variables is
still to handle with the case n = 50. An alternative linear
programming based method to handle the general TSIC (3)
has been developed in [11], which allows to solve it for the
order n up to 100. However, the case of higher order is still
persistent.
In this paper, a new LMI technique is developed in practical
for solutions of the general TSIC (3) of much more compet-
itive orders. Based on the new full LMI characterization for
the convex hull of the trigonometric curve Ca,b defined by
(1), which is also of independent interest, we show that the
semi-infinite optimization problem involving TSIC (3) can
be solved by the LMI optimization problem with additional
variables of dimension just n. The solution of our method
is very robust and allows us to address almost all practical
filter design problems. Our derivation arguments are only
based on simple results of the convex analysis [9] and some
formal elementary transforms.
The paper is organized as follows. After Section 1, the LMI
characterization for the convex hull of the trigonometric
curve (1) is developed in Section 2. This result is applied
in Section 3 for robust LMI based solutions of optimization
problems involving TSIC (3). Their applications to filter
design problems are discussed in Sections 4. Due to the
space limitation, all the proofs and derivations are omitted
in this paper.
The notations used in the paper are standard. By X ≥
0 we mean a (symmetric) positive semi-definite matrix
while 〈., .〉 stands for the inner product of matrices, i.e.
〈X, Y 〉 = Trace(XY ) = Trace(Y X) for matrices X, Y .
It is almost trivial fact that the dimension of the space of
all n × n-symmetric matrices is n(n + 1)/2. For a given
set C ⊂ Rn its convex hull (cone hull, resp.) is denoted
by conv(C) (cone(C), which is the smallest convex set
(smallest cone, resp.) containing C. The polar set of C is
the cone C∗ = {x ∈ Rn : 〈x, y〉 ≥ 0 ∀y ∈ C}.

II. TRIGONOMETRIC MARKOV-LUKACS THEOREM AND

CONVEX HULL

In this section we develop LMI characterization for the
convex hull of the trigonometric curve (1).
Define the k-th moment trigonometric matrix Tk of size

(k + 1) × (k + 1) as the positive semi-definite one

Tk(t) =

⎡
⎢⎣

1
cos t
..

cos kt

⎤
⎥⎦ [ 1 cos t .. cos kt ]T (10)

=

⎡
⎢⎣

1 cos t .. cos kt
cos t cos 2t+1

2 .. cos(k+1)t+cos(k−1)t
2

.. .. .. ..
cos kt cos(k+1)t+cos(k−1)t

2 .. cos 2kt+1
2

⎤
⎥⎦ ,

and accordingly, the matrix Tk(y) is created from Tk(t) by
the variable change

cos ht ← yh, h = 0, 1, 2, ..., (11)

i.e.

Tk(y) =

⎡
⎢⎣

y0 y1 ... yk

y1
y2+y0

2 ...
yk+1+yk−1

2
... ... ... ...
yk

yk+1+yk−1
2 ... y2k+y0

2

⎤
⎥⎦ . (12)

Define also
T�k(t) = cos �tTk(t) (13)

and accordingly T�k(y) is created from T�k(t) by the
variable change (11). Naturally, let T0k(t) denote Tk(t).
The role of the introduced trigonometric moment matrices
for trigonometric polynomials is similar to that of moment
matrices for algebraic polynomials in the Markov-Lucacs
theorem [7] as shown in the following theorem, which is
one of our main results in this section.

Theorem 1: Any trigonometric polynomial P (t) =
n∑

h=0

ph cos ht of degree not more than n, which is nonneg-

ative on [cos a, cos b] admits the representation

P (t) = 〈X, Tk(t)〉 + 〈Z, (cos b + cos a)T1(k−1)(t)
− 1

2T2(k−1)(t) − ( 1
2 + cos a cos b)Tk−1(t)〉,

X ≥ 0, Z ≥ 0, for n = 2k, (14)

P (t) = 〈cos b Z − cos a X, Tk(t)〉 + 〈X − Z, T1k(t)〉,
X ≥ 0, Z ≥ 0, for n = 2k + 1. (15)

By comparison of terms with the same ”power” cos hω at
both sides of (14), (15) one can easily obtain an equivalent
new LMI constraint characterization for the trigonometric
semi-infinite constraint P (t) ≥ 0 ∀ cos t ∈ [cos a, cos b].
Then, as a consequence of the above Theorem we can
obtain a new version of the Kalman-Yakubovich-Popov
lemma for a positive real sequence as well. Moreover,
the size of matrices X and Z in representations (14),
(15) are ([n/2] + 1) × ([n/2] + 1) and [n/2] × [n/2]
(for n even) or ([n/2] + 1) × ([n/2] + 1) (for n odd)
vs. (n + 1) × (n + 1) and n × n of their counterparts
in LMI formulation of [4], i.e. their size have been
substantially reduced. However, such size is still high
for practical applications and we will see later that such
drawback is avoided through the LMI characterization for
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the convex hull of the set Ca,b, which is formulated shortly.

Theorem 2: The convex hull of the set Ca,b defined by
(1) is fully characterized by LMIs:

convCa,b = {(y0, y1, y2, ..., yn) : Tk(y) ≥ 0,

Fa,b
k (y) ≥ 0, y0 = 1}, for n = 2k (16)

convCa,b = {(y0, y1, y2, ..., yn) : cos bTk(y) ≥ T1k(y)
≥ cos aTk(y) y0 = 1} for n = 2k + 1 (17)

where

Fa,b
k (y) = (cos b + cos a)T1(k−1)(y) (18)

−1
2
T2(k−1)(y) − (

1
2

+ cos a cos b)Tk−1(y)

Consequently, the cone hull of convCa,b is defined by

coneCa,b = {(y0, y1, y2, ..., yn) : Tk(y) ≥ 0,

Fa,b
k (y) ≥ 0}, for n = 2k (19)

coneCa,b = {(y0, y1, y2, ..., yn) : cos bTk(y) ≥ T1k(y)
≥ cos aTk(y)} for n = 2k + 1. (20)

It is obvious that C∗
a,b = (conv(Ca,b))∗ so Theorem 2

allows us to handle the general TSIC (3) by a LMI with
the minimal number of variables as we see through the next
section.

III. APPLICATION TO CONVEX QUADRATIC OBJECTIVE

OPTIMIZATION

For simplicity of description consider the case n = 2k.
It is clear from our developemnt that the case n = 2k+1 is
approached similarly. For the peak-error constrained filter
design problem (see section 4), we have to deal with the
convex quadratic objective

min
x

xT Qx + cT x : Aix + di ∈ C∗
ai,bi

, i = 1, 2, ..., m,

(21)
(Q > 0), which by Theorem 1 is actually a LMI optimiza-
tion problem but of a high dimension.
We will use the short notation Ci to refer coneCai,bi . Then
the dual problem of (21) is

max
y(i)∈Ci

min
x

[xT Qx + cT x −
m∑

i=1

(Aix + di)T y(i)] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
y(i)

−
m∑

i=1

y(i)di−
1
4 (c −

∑m
i=1 Aiy

(i))T Q−1(c −
∑m

i=1 AT
i y(i)) :

(19) for ai ← a, bi ← b, i = 1, 2, ..., m,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(22)

which can be rewritten as the LMI optimization program

min
y(i),ν

m∑
i=1

y(i)di + ν :
⎡
⎢⎢⎢⎣

ν cT −
m∑

i=1

y(i)T Ai

c −
m∑

i=1

AT
i y(i) 4Q

⎤
⎥⎥⎥⎦ ≥ 0,

(19) for ai ← a, bi ← b, i = 1, 2, ..., m,

(23)

in the sense that

max (22) = −min (23)

The optimal solution x∗, y
(i)
∗ of (21) and (22) must satisfy

the complementary condition
m∑

i=1

(Aix∗ + di)T y
(i)
∗ = 0, (24)

x∗ = −1
2
Q−1(c −

m∑
i=1

AT
i y

(i)
∗ ) (25)

It looks like that x∗ must satisfy the overdetermined con-
ditions (24) and (25). However, it can be easily shown
that (24)-(25) are necessary and sufficient (Kuhn-Tucker
condition) for the optimality of y

(i)
∗ . Therefore the optimal

solution x∗ of (21) is directly retrived from the optimal
solution y

(i)
∗ of (22) by formula (25). One can see that

the total number of scalar variables in (22) is mn vs their
counterpart mn(n + 1)/2 + n in the corresponding LMI
reformulation of (21).

IV. FIR FILTER DESIGN

Generally, a peak-constrained least-squares errors (PCLS)
low-pass filter design problem can be formulated as follows:
given a passband [0, ωp] and stopband [ωs, π], we wish to
design a linear phase filter such that the weighted-square
error under the peak-error constraints (7) is minimized:

min
x

Wp

∫ ωp

0

|H(ejω) − e−jnω|2dω (26)

+ Ws

∫ π

ωs

|H(ejω)|2dω s.t. (7).

Clearly, the objective function in (26) is convex quadratic
function xT Qx − qT x + r in the filter coefficients x =
(x0, x2, ..., xn), where

Q = Wp

∫ ωp

0

Tn(t)dt + Ws

∫ π

ωs

Tn(t)dt, (27)

q = 2Wp

∫ ωp

0

[ 1 cos t ... cos nt ]T dt, (28)

r = Wpωp. (29)

The equivalent form of (26) is the following particular case
of (21):

min
x=(x0,x1,...,xn)T

xT Qx − qT x + r : (8) (30)

As mentioned above, the problem (30) can be solved by its
dual (23), and after that its solution is calculated by (25).
In our simulation, the problem (30) is considered with
different data given in Table 1. The value of Wp and Ws is
set to 2 and 2000, respectively.

Figure 1 show the frequency responses of the designed
401-tap filters. The correspnding optimal value of (23) is
equal to 0.06, and the LHS of (24) is about 2.1538e− 009.
The coefficients of the designed filter is calculated by
formula (25). As described in Table 1, the passband is set
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Filter length kp ks
1+δp

1−δp
δs

(2n + 1)
401 0.03 0.04 1.0 DB -80 DB
1201 0.1 0.105 1.0 DB -100 DB

TABLE I

DATA OF PROBLEM (30) IN THE SIMULATION EXAMPLES WITH

ωp = 2πkp AND ωs = 2πks

to ωp = 2π0.03, and the stopband is equal to ωs = 2π0.04.
We can see from Figure 1 that the filter frequency response
in the passband is perfectly equal to 0db, and its value in the
stopband is less than -80db. This means that the result of
the designed filter strongly satisfies the peak constraints. In
practice, we may like to design a FIR filter has the size of
transition band, the ripples in passband and the frequency
response of stopband as small as possible. As a result,
we increase the order of filter to satisfy the designed con-
straints, but the tradeoff is the complexity of computation.
This tradeoff in our method is mitigated greatly because
the number of variables in our proposed method is equal to
the number of coefficients of our designed filter. Similarly,
Figure 2 presents the the frequency responses of the 1201-
tap filter. The corresponding optimal value of (23) is equal
to 0.2, and the LHS of (24) is equal to 5.6533e − 009.
In this case, the values of ωp and ωs are set to 0.1 and
0.105, respectively. Therefore, the shape of transition band
is stretched vertically.

V. CONCLUDING REMARKS

Certainly, LMI optimization provides a very useful tool
for filter/filter-bank design problems. Until now, the appli-
cation power of LMI is limited due to the artificial high
dimension of LMI formulations for such problems. In this
paper, we have developed a LMI formulation of moderate
size for such problems that makes LMI not only useful
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Fig. 1. Frequency response of the linear phase 401-tap FIR filter

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-200

-150

-100

-50

0

50

ω/(2π)

D
B

Fig. 2. Frequency response of the 1201-tap linear phase FIR filter.

but powerfull tool as well. More advanced applications of
our results in problems such as a design of biorthogonal
cosine-modulated filter bank with about M = 32 channels
and with length about M = 512 for ADSL (Asymmetric
Digital Subscriber Line) in highbandwidth communication,
a design of attenna pattern are under way. Our approach also
works for multidimensional filter design as we will address
it in an another work.
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