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ABSTRACT

Modified Yule-Walker (MYW) equations are often used to 

estimate autoregressive parameters of an Auto-Regressive 

Moving Average (ARMA) model. Commonly used algorithms, 

i.e. the Least Square (LS) algorithm, the Total Least Square 

(TLS) algorithm, cannot give an optimal estimate because they 

do not exploit the Toeplitz property and covariance of the 

perturbation matrix.  In this paper, a Constrained Total Least 

Squares (CTLS) algorithm is applied to solve modified Yule-

Walker equations. The perturbation covariance matrix of the 

autocorrelation functions required by the CTLS algorithm is 

estimated by introducing the Bootstrap method. By utilizing 

Toeplitz property and the covariance of perturbation matrix, a 

Newton method based CTLS algorithm is shown to outperform 

TLS and LS solutions.

1. INTRODUCTION 

Modified Yule-Walker (MYW) equations are often used to 

estimate the autoregressive parameters of an AutoRegressive 

Moving Average (ARMA) model [1]. Because the Least Square 

(LS) and Total Least Square (TLS) algorithms do not need prior 

knowledge about the perturbation covariance and are easy to 

implement, they are commonly used to solve MYW equations. 

Yet, failing to address the Toeplitz structure and covariance 

properties of the perturbation matrix of the MYW equations 

impairs the estimation accuracy of LS and TLS algorithms. In 

contrast, a Constrained Total Least Square (CTLS) algorithm [2] 

can help address these properties and provide the potential to 

improve the estimation accuracy. Yet, during its implementation, 

it requires the estimation of perturbation covariance, which is 

very difficult to obtain using conventional methods. Thus, 

according to authors’ knowledge, the CTLS algorithm has not 

been used to solve MYW equations before. Recently, with the 

rapid growth of computation speed, some computation intensive 

methods, e.g. the Bootstrap method, are introduced to help 

assess statistical properties of parameter estimations. This 

provides a possible solution to disturbance covariance 

estimation. In this study, we apply the Bootstrap method to 
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estimate the perturbation covariance and then employ CTLS 

algorithm to solve MYW equations using the estimated 

perturbation covariance. 

The organization of this paper is listed as follows: In section 2, 

the difficulties with LS, TLS solution for MYW equations are 

discussed. In section 3, we will introduce the formulation of 

CTLS algorithm. In section 4, the Bootstrap method will be used 

to estimate the covariance matrix. In section 5, calculation 

procedure of CTLS algorithm based on estimated covariance 

matrix is described. In section 6, simulation is performed to 

show the estimation improvement by using CTLS algorithm. In 

section 7, some conclusions are discussed. 

2. MYW EQUATIONS AND LS/TLS ALGORITHMS 

An  (nth , mth) order ARMA model can be defined as 
m
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where e(t) is a zero mean white noise sequence with variance of 
2

e
 , ai’s for i=1, 2, … , n are the autoregressive (AR) 

parameters to be estimated. b0=1. bj’s for j=1, 2, … , m are the 

moving average (MA) parameters to be estimated.  

According to [1], we have 
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This leads to the well-known MYW equations for AR 

parameters
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Here, M is the number of equations. If )(kry
’s were accurately 

known, (3) would give the exact solution for AR parameters 

with nM . However, what is usually available is the data 

sample sequence of )}(,),2(),1({ Nyyy , The autocorrelation 

function of y(t) is estimated through  
N
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and it contains some estimation errors. As such, we can only 

obtain an estimation of the AR parameters through

raR ˆˆˆ  . (5) 
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In order to get a good estimation of AR parameters, we often set 

M>n to obtain a set of over-determined equations. 

There are several algorithms to obtain the estimation solution for 

(5). The first algorithm is called LS method [1], which gives the 

solution for (5) as
2

ˆ

ˆˆˆminarg raRa
a

LS
, (6) 

or equivalently, obtain a minimal perturbation r̂  which makes 

the equation (5) consistent, 
2

ˆmin r    subject to  rraR LS
ˆˆˆ . (7) 

This algorithm is optimal in the most likelihood sense when 

errors are only with r̂  and are independently normally 

distributed.  In our application, there are estimation errors in 

both R̂  and r̂ . The LS solution is not optimal since it does not 

address the estimation errors in R̂ .

The second algorithm is called TLS algorithm [1], which gives 

the solution for (5) as
2

]ˆˆ[min Rr   subject to   

rraRR TLS
ˆˆ)ˆˆ(   (8) 

The TLS algorithm includes the disturbance in both R̂  and r̂  to 

address the estimation error in them.  

Yet, in our MYW equations, the disturbance not only stays in 

both R̂  and r̂  but also has a Toeplitz structure. To make it 

clear, notice that following equation holds. 

][]ˆˆ[][ RrRrRr ,  (9) 

in which the disturbance matrix has a Toeplitz structure. The 

TLS algorithm does not provide an optimal solution for MYW 

equations because it does not address the Toeplitz structure of 

this disturbance matrix.  

3. THE CONSTRAINED TOTAL LEAST SQUARE 

ALGORITHM

The CTLS algorithm [2] has been successfully applied to 

damped sinusoids parameters estimation [3] and random 

amplitude sinusoid detection [4].  With the ability to address the 

Toeplitz structure and covariance of disturbance matrix, CTLS 

may provide an optimal solution to MYW equations. It is a 

generalization of TLS technique and has a maximum-likelihood 

interpretation [2]. To be consistent with notation in [2], we write 

(5) in the following form. 

0
1

â
C  where )1(]ˆˆ[ nMRrRC .

 We need to find a disturbance matrix 
)1(nMRrRC  such that the whitened 

disturbance elements within C  are minimized and 

0
1

â
CC . According to [2], in order to solve the (5) 

using CTLS algorithm, the disturbance matrix C  needs to be 

written in the form of its disturbance elements  

)(,),2(),1( Mmrnmrnmr yyy
.

Also we have )(ˆ)(ˆ krkr yy
 for a real ARMA process. Thus 

the problem can be formulated in two situations, 

Situation #1: 01nm

The minimal disturbance elements are 

)(,),2(),1( Mmrnmrnmr yyy
.

The number of minimal disturbance elements is  

nMK .

Define a disturbance vector as 

T

yyy Mmrnmrnmrv ])()2()1([  . 

Let C  be written in terms of its columns as  

121 nCCCC .

We have 

1,,2,1 niforvFC ii

where KM

i RF can be deduced from the structure of 
iC as   

niforIF iMMMinMi ,,2,1][ )(

][1 MMnMn IF ,

where
lr
stands for zero matrix of dimension lr .

rrI stands

for identity matrix of r dimension. 

Situation #2: 01nm

The minimal disturbance elements are 

)(,),1(),0( Mmrrr yyy
.

The number of minimal disturbance elements is  

1mMK .

Define a disturbance vector as 

T

yyy Mmrrrv ])()1()0([ .

Similarly, we have 
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where KM
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rrJ stands for backward identity matrix of r dimension or 
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For both situations, define the covariance of 1KRv  as 

}{ T

v vvER . Perform the Cholesky factorization on the 

perturbation covariance matrix T

v PPR . Then we may define 

u  as 

11 KRvPu ,

so that u  is a white vector. And

1,,2,1 niforuGuPFvFC iiii
.

As such, CTLS can be formulated as 
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According to [2], we need to estimate 
vR , the perturbation 

covariance matrix of 1KRv  to do the CTLS calculation. It’s 

very difficult, if not impossible, to get the covariance matrix 

using traditional methods. In our application, we will apply the 

Bootstrap method to estimate this covariance matrix. 

4. ESTIMATE PERTURBATION COVARIANCE MATRIX 

USING THE BOOTSTRAP METHOD 

The central idea about the Bootstrap method is re-sampling, 

which is well described in [5][6]. In our application, we are 

going to follow the following procedures of the bootstrapping 

residual method to estimate the perturbation covariance matrix 

vR .

1) Calculate parameter estimation ,ˆ,,ˆ,ˆ{ 21 naaa }ˆ,,ˆ,ˆ
21 mbbb

by the two-stage least square method described in [1] based on a 

block of observation )}(,),2(),1({ Nyyy .

2) Estimate a sequence of residuals ste )'(  based on 

}ˆ,,ˆ,ˆ,ˆ,,ˆ,ˆ{ 2121 mn bbbaaa  and )}(,),2(),1({ Nyyy .

3) Treat the sequence ste )'( as a group of samples for a random 

variable E and estimate the probability density function (pdf) of 

E, )(ˆ xfE
, based on ste )'( . Note that if the )(ˆ xfE

 appears to be 

close to a normal distribution, we only need to estimate the 

variance of E to obtain the pdf. 

4) Set i=1.

5) Based on this pdf estimation )(ˆ xfE
, we may generate a 

sequence of residuals ste ib )'(ˆ
)(

, which are usually called 

bootstrapping residuals. 

6) Pass this newly generated residual sequence through the 

ARMA model defined by }ˆ,,ˆ,ˆ,ˆ,,ˆ,ˆ{ 2121 mn bbbaaa . We get a 

set of bootstrapping outputs )}(ˆ,),2(ˆ),1(ˆ{ )()()( Nyyy ibibib
.

7) Estimate )(ˆ
)( ty ib

’s autocorrelation functions )(ˆ
)( kr iyb

 and 

form the corresponding disturbance vector, i.e.,

01nmif
T
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8) Set i=i+1 and repeat 5,6,7 for L times. 

9) Define 
L

i

imean R
L

R
1

ˆ1ˆ .    Construct the matrix  

]ˆˆˆˆˆˆ[ˆ
21 meanLmeanmean RRRRRRV

10) Estimate the perturbation covariance as T

v VV
L

R ˆˆ1ˆ

Note that the Bootstrap method is a computation intensive 

method. There is a trade-off between the estimation accuracy 

and L, number of calculation repeats.

5. CALCULATION PROCEDURE OF CTLS USING 

NEWTON’S METHOD 

A general closed-form CTLS solution is almost impossible. Thus 

the authors of [2] developed a Newton’s method to address this 

quadratic minimization problem. With the Bootstrap estimation 

of the covariance matrix of 1KRv  discussed in previous 

section, we may calculate CTLS solution using Newton Method 

as follows. 

1) Use the TLS solution of MYW equations as the initial value 

TLSaa ˆ)1(ˆ . Set j=1.

2) Get P from the Cholesky factorization of the perturbation 

covariance matrix KKT

v RPPR̂ .

3) Calculate 1,,2,1 niwithRPFG KM

ii
.

4) Do the following Calculation 
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5) Revise of the solution as

)()()(ˆ)1(ˆ 111 aABaBAABjaja

and set j=j+1. 

6) Repeat steps 4-5 until )(ˆ ja  converges. 

Notice that the Newton algorithm cannot guarantee the 

convergence. If divergence happens, we’ll retain the 
TLSâ as the 

solution. Readers are referred to [2] for some details. 

6. SIMULATION RESULTS 

Two ARMA models, which were used on page 135 of [1], were 

employed in this paper to compare the performance of LS, TLS, 

CTLS algorithms in solving MYW equations. The broadband 

ARMA model takes form as 

)4(2401.0)3(1736.0)2(3508.0)1(3544.0)(

)4(4096.0)3(8843.0)2(5632.1)1(3817.1)(

tetetetete

tytytytyty

which has poles at )45.0exp(8.0 i , )25.0exp(8.0 i ,

zeros at )35.0exp(7.0 i , )75.0exp(7.0 i  with n=m=4. 

Another model is a narrowband ARMA model. 

)2(9604.0)1(5857.1)(

)4(8145.0)3(4808.1)2(2044.2)1(6408.1)(

tetete

tytytytyty

which has poles at )25.0exp(95.0 i , )45.0exp(95.0 i

and zeros at )8.0exp(98.0 i  with n=4, m=2. 
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Fig 1. Performance comparison between the CTLS and TLS 

algorithms for the simulation data from the broad-band model. 

One hundred sets of simulation data were generated. The length 

of each data set was N=8000. First 1500 data were discarded to 

make ARMA model response enter into a steady state. MYW 

equations were constructed using the autocorrelation estimation. 

LS, TLS, CTLS algorithms were used to solve the MYW 

equations for AR parameters with M=2n=8. For CTLS 

algorithm, the Bootstrap with L=500 was used to estimate the 

perturbation covariance matrix. The Newton’s method is used to 

get the recursive solution for the CTLS algorithm. The poles of 

models were calculated from estimated AR parameters to 

compare the performance among different algorithms.

Table 1 shows the mean square errors (MSE) of poles estimation 

results. It can be observed from the table that LS and TLS 

algorithms give the estimation with similar performance. The 

CTLS algorithm outperforms LS and TLS algorithms in the 

sense of MSE when it is used to do poles estimation for ARMA 

model.

TABLE 1. MEAN SQUARE ERROR (MSE) OF POLES ESTIMATION

USING DIFFERENT ALGORITHMS

Poles 
MSE of 

LS(10-4)

MSE of 

TLS(10-4)

MSE of 

CTLS(10-4)

0.8exp( i0.45 ) 15.7 14.8 6.4 

0.8exp( i0.25 ) 7.7 7.7 4.5 

0.95exp( i0.45 ) 0.231 0.231 0.128 

0.95exp( i0.25 ) 0.169 0.169 0.155 

In order to evaluate the influence of data length (N) on the 

performance improvement of the CTLS algorithm, we apply 

CTLS on the data sets of various length generated from both 

ARMA simulation models. In addition, we introduce the 

performance improvement index as 

CTLS

TLSorLS

MSE

MSE
PI 10log10

As the performance of LS and TLS algorithms are similar, to 

make the plots concise, we only show the performance 

improvement of the CTLS over TLS in Fig 1 and 2 for both 

models. It can be observed from the figures that the performance 

improvement of CTLS over TLS is consistent and has an 

increase trend with the increase of data length. 

Fig 2. Performance comparison between the CTLS and TLS 

algorithms for the simulation data from the narrow-band model. 

7. CONCLUSIONS  

In this study, a CTLS algorithm is applied to estimate the 

autoregressive parameters of an ARMA model. By utilizing the 

Bootstrap method, the perturbation covariance of the 

autocorrelation functions is estimated. The performance of 

CTLS method, which is based on a Newton method and this 

perturbation covariance estimation, is shown to outperform TLS 

and LS solution for both narrowband and broadband simulation 

models. Future works may include the investigation of the 

influence of relative pole position on the estimation results. 

Also, the application can be extended to address ARMA 

problem with some added measurement noises. 

6. REFERENCES 

[1] P. Stoica, and R. Moses, Introduction to Spectral Analysis,

Prentice Hall, 1997. 

[2] T. J. Abatzoglou, and J. M. Mendel, “The Constrained Total 

Least Squares Technique and Its Applications to Harmonic 

Supperresolution,” IEEE Transactions on Signal Processing,

vol. 39, no. 5, pp. 1070-1086, May, 1991.  

[3] T. J. Abatzoglou, “Optimal Estimation of Parameters of 

Exponentially Damped Sinusoids by the Constrained Total Least 

Squares Method,” Conference Record - Asilomar Conference on 

Circuits, Systems & Computers, vol. 1, pp. 447-451, 1991.

[4] O. Besson, “Improved Detection of a Random Amplitude 

Sinusoid by Constrained Least-square Technique,” Signal

Processing, pp. 347-356, vol. 45, no. 3, 1995. 

[5] A.M. Zoubir and B. Boashash, “The Bootstrap and its 

Application in Signal Processing,” IEEE Signal Processing 

Magazine, pp. 56-76, Jan. 1998. 

[6] D. N. Politis, “Computer-Intensive Methods in Statistical 

Analysis,” IEEE Signal Processing Magazine, pp. 39-55, Jan 

1998.

IV - 420

➡ ➠


