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ABSTRACT

We address the problem of confidence interval estimation for the
coherence function. We revisit a recently proposed approach to
calculate confidence intervals from the asymptotic distribution func-
tion of the sample coherence function. We then propose a boot-
strap based approach and compare the level of confidence obtained
by the two methods as well as a well-established method proposed
by Enochson and Goodman. Extensive simulations have shown
that the bootstrap approach is more accurate, in particular for a
large coherence and non-Gaussian data.

1. PRELIMINARIES

Consider the real, 2 vector-valued stationary process (X(t), Y (t))
for t = 0,±1, . . .. Assume that the process possesses the sec-
ond order spectral densities CXX(ω), CY X(ω) and CY Y (ω) for
−∞ < ω < ∞. The coherence function, also called the magnitude-
squared coherence function, of Y (t) and X(t), t = 0,±1, . . ., at
frequency ω is defined as

|RY X(ω)|2 =
|CY X(ω)|2

CXX(ω)CY Y (ω)
, −∞ < ω < ∞ (1)

For simplicity we shall refer to |RY X(ω)|2 as the coherence. It
measures the extent to which Y (t) is determinable from X(t), t =
0,±1 . . ., at frequency ω by linear time-invariant operations and is
bounded between 0 and 1.

If Y (t) is the output of a linear time-invariant filter plus noise,
as depicted in Figure 1, then the spectral density of the noise pro-
cess E(t) is given by CEE(ω) = (1 − |RY X(ω)|2)CY Y (ω).

X(t) Y (t)
h(t), H(ω)

E(t)

Fig. 1. Linear time-invariant filtering plus noise.

2. ESTIMATION OF THE COHERENCE

We consider non-parametric estimation of the coherence. Assume
that we are given independent data records X(t, l) and Y (t, l) for
t = 0, . . . , T − 1 and l = 1, . . . , n. Define the finite Fourier

transforms of the data by dX(ω, l) =
∑T−1

t=0 w(t/T )X(t, l)e−jωt

and dY (ω, l) =
∑T−1

t=0 w(t/T )Y (t, l)e−jωt for −∞ < ω < ∞,
where w(t̃), t̃ ∈ R is a window that is bounded, is of bounded
variation and vanishes for |t̃| > 1. Let

ĈXX(ω) =
1

nT

n∑
l=1

|dX(ω, l)|2 , ĈY Y (ω) =
1

nT

n∑
l=1

|dY (ω, l)|2

and

ĈY X(ω) =
1

nT

n∑
l=1

dY (ω, l)d̄X(ω, l)

be estimates of CXX(ω), CY Y (ω) and CY X(ω), −∞ < ω < ∞,
respectively, obtained by averaging n periodograms, where we de-
noted by d̄X(ω, l) the complex conjugate of dX(ω, l). An estimate
of the coherence is obtained by

|R̂Y X(ω)|2 =
|ĈY X(ω)|2

ĈXX(ω)ĈY Y (ω)
. (2)

Under regularity conditions, which include strict stationarity of
the vector process (X(t), Y (t)), existence of all moments and
absolute summability of all k-th order cumulant functions for all
k = 2, 3, . . ., the asymptotic probability density function (pdf) of
|R̂Y X(ω)|2 (omitting frequency ω) is given by

(1 − |RY X |2)n
2F1(n, n; 1; |RY X |2|R̂Y X |2)

×(n − 1)(1 − |R̂Y X |2)n−2 (3)

where 2F1(a, b; c; z) is the hypergeometric function, defined by

∞∑
n=0

(a)n(b)n

(c)n
·
zn

n!
=

Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a + n)Γ(b + n)

Γ(c + n)
·
zn

n!
,

where Γ(n + 1) = n! and (a)n = a(a + 1)(a + 2) · · · (a + n −
1) = Γ(a + n)/Γ(a) for n ≥ 0, with (a)0 = 1. The asymptotic
cumulative distribution function (cdf) is given by(

1 − |RY X |2

1 − |RY X |2|R̂Y X |2

)n

|R̂Y X |2

×

n−2∑
k=0

(
1 − |R̂Y X |2

1 − |RY X |2|R̂Y X |2

)k

2F1(−k, 1 − n; 1; |RY X |2|R̂Y X |2) . (4)

The asymptotic pdf was given by Goodman [1] (see also [2]).
Note that the choice of another estimator such as the smoothed
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periodogram [3] or Welch’s spectral estimate [4] would lead to the
same results with due consideration given to the number of degrees
of freedom of the estimation, i.e., n. The pdf and cdf expressions
are exact if the vector-valued process is assumed to be Gaussian
distributed.

3. CONFIDENCE INTERVAL ESTIMATION

For a given |R̂Y X(ω)|2 of |RY X(ω)|2, we wish to determine a
lower bound RL(|R̂Y X(ω)|2) and an upper bound RU (|R̂Y X(ω)|2)
so that for a given α

P(RL(|R̂Y X(ω)|2) ≤ |RY X(ω)|2 ≤ RU (|R̂Y X(ω)|2)) = 1−α .

The random interval (RL(|R̂Y X(ω)|2), RU (|R̂Y X(ω)|2)) is called
the confidence interval and covers the parameter |RY X(ω)|2 with
probability 1 − α. Under full knowledge of the distribution of
|R̂Y X(ω)|2 the confidence bounds are exact, otherwise they are
approximations.

Recently Wang and Tang [5] proposed an iterative method
which enables computation of a library of confidence intervals.
The authors, without making any assumption on the distribution
of the vector process, claim that they produce exact confidence
intervals for the coherence |RY X(ω)|2 while in fact they use the
asymptotic cdf given in Eq. (4). They also claim that their method
produces more accurate confidence intervals than approximations,
especially when the number of data segments is small.

The prefix exact in [5] suggests that exact confidence bounds
are drawn, but the authors use the asymptotic distribution given in
Eq. (4). Also, the method proposed by the authors uses a Taylor
series expansion which makes the proposed confidence interval an
approximate one.

It should be noted that confidence intervals based on the cdf in
Eq. (4) have been given by Amos and Koopmans in 1963. Exam-
ples of these for 80% and 95% confidence levels can be found in
[6].

Enochson and Goodman [7] have also shown that for n > 20
and 0.4 ≤ |RY X(ω)|2 ≤ 0.95

|R̆Y X(ω)| = tanh −1|R̂Y X(ω)|

is approximately normally distributed with mean E|R̆Y X(ω)| =

tanh −1|RY X(ω)| + 1/(2(n − 1)) and variance var|R̆Y X(ω)| =
1/(2(n − 1)). Using this approximation an 100(1 − α)% confi-
dence interval for |RY X(ω)|2 can be readily obtained, where the
lower and upper confidence bounds are given respectively by

tanh {tanh −1|R̂Y X(ω)| − φα/2
1√

2(n − 1)
−

1

2(n − 1)
}

tanh {tanh −1|R̂Y X(ω)| + φα/2
1√

2(n − 1)
−

1

2(n − 1)
} ,

where φα/2 is the upper α/2 cutoff point for the standard normal
distribution.

The purpose of the paper is to assess the accuracy of the con-
fidence bounds suggested by Wang and Tang [5] and to also pro-
pose a bootstrap based confidence interval estimation as an alter-
native. Further, we will compute confidence intervals found with
the Gaussian approximation in [7] and compare the results with
those obtained with the method suggested by Wang and Tang [5]
and our proposed bootstrap method depicted in Tables 1 and 2.

We note that in [8] bootstrap methods for the estimation of
the distribution of the difference of (statistically dependent) sam-
ple multiple coherences have been discussed (see also [9]). Here,
we will restrict our study to the coherence and omit the multiple
coherence. However, all the methods discussed in this paper can
be easily extended to the multiple coherence, as a generalisation
of the coherence.

Bootstrapping coherences can be performed in two ways. One
approach would be to explore a linear regression as a result of the
model given in Figure 1. Omitting the error term oa.s.(1), which
tends to zero almost surely as T → ∞ [3], we have

dY (ω) = H(ω)dX(ω) + dE(ω) .

We would first estimate H(ω) through Ĥ(ω) = ĈY X(ω)/ĈXX(ω)
and define residuals

dÊ(ω) = dY (ω) − Ĥ(ω)dX(ω) .

Given n independent data records, we would perform two totally
independent resampling operations. We would draw, with replace-
ment {d∗

X(ω, 1), . . . , d∗
X(ω, n)} from {dX(ω, 1), . . . , dX(ω,n)}

and a resample {d∗
Ê
(ω, 1), . . . , d∗

Ê
(ω, n)} from the residual data

{dÊ(ω, 1), . . . , dÊ(ω, n)}. Bootstrap data for dY (ω) is obtained
via the regression

d∗
Y (ω) = Ĥ(ω)d∗

X(ω) + d∗
Ê(ω) ,

where the joint distribution of {(d∗
X(ω, l), d∗

Y (ω, l)), 1 ≤ l ≤
n}, conditional on the sample of the measurement data X (ω) =
{(dX(ω, 1), dY (ω, 1)), . . . , (dX(ω,n), dY (ω,n))} is the bootstrap
estimate of the unconditional joint distribution of X (ω).

The above approach would enable us to replicate estimates of
|R̂Y X(ω)|2 with the bootstrap and estimate confidence bounds.
However, the approach relies on the model of Figure 1. In the
absence of any model, we propose the approach of Table 1, which
makes use of the input-output data only.

In Table 1, we used a variance stabilising transformation h in
order to get more accurate confidence intervals [9]. Its estimation
is given in Table 2. Note that the variance estimation in Table 2
can also be performed using the jackknife in Step b). It should
also be noted that in this particular case we could use the trans-
formation tanh −1 which is known to be variance stabilising and
would reduce computations.

4. THE EXPERIMENT

We consider a linear time-invariant (LTI) system as depicted in
Figure 1, modelled by a finite impulse response (FIR) filter of sec-
ond order whose frequency transfer function is given by H(ω) =
1−0.5e−jω +1.5e−j2ω . The LTI system is driven by white noise
X(t), t = 0,±1, . . ., with spectral density CXX(ω) = σ2

X . In-
dependent white noise E(t), with spectral density σ2

E , is added to
the output of the system to generate Y (t), t = 0,±1, . . . (See
Figure 1). It can easily be shown that in this case the coherence
|RY X(ω)|2 is given by

|RY X(ω)|2 =
1

1 + |H(ω)|−2 σ2
E/σ2

X

.

We construct confidence intervals for various true values of the
coherence |RY X(ω)|2 given above as follows. We generate inde-
pendently X(t, l) and E(t, l), t = 0, . . . , T − 1 for l = 1, . . . , n
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Table 1. The Bootstrap procedure.

Step 0. Data Collection. Conduct the experiment and cal-
culate the frequency data dX(ω, 1), . . . , dX(ω,n) and
dY (ω, 1), . . . , dY (ω, n).

Step 1. Resampling. Using a pseudo random num-
ber generator, draw a random sample, X ∗(ω) (of
the same size), with replacement, from X (ω) =
{(dX(ω, 1), dY (ω, 1)), . . . , (dX(ω, n), dY (ω, n))}.

Step 2. Bootstrap Estimates. From X ∗(ω), calculate |R̂∗
Y X(ω)|2,

the bootstrap analogue of |R̂Y X(ω)|2 given in Eq. (2), re-
placing the estimates by their bootstrap counterparts and
form h(|R̂Y X(ω)|2) and h(|R̂∗

Y X(ω)|2).

Step 3. Repetition. Repeat Steps 1-2 a large number of
times to obtain a total of N bootstrap statistics
|R̂∗1

Y X(ω)|2, . . . , |R̂∗N
Y X(ω)|2.

Step 4. Distribution Function Estimation. Sort the variance
stabilised bootstrap estimates in increasing order to ob-
tain h(1)(|R̂∗

Y X(ω)|2) ≤ . . . ≤ h(N)(|R̂∗
Y X(ω)|2) and

approximate the density function of h(|R̂Y X(ω)|2) −

h(|RY X(ω)|2) by the density function of h(|R̂∗
Y X(ω)|2)−

h(|R̂Y X(ω)|2).

Step 5. Confidence Bands Estimation. For a desired
(1 − α)100% bootstrap confidence interval, find
critical points of the bootstrap distribution of
h(|R̂∗

Y X(ω)|2) − h(|R̂Y X(ω)|2), h(q1)(|R̂∗
Y X(ω)|2)

and h(q2)|(R̂∗
Y X(ω)|2), say, where q1 = �(N + 1)α/2�

and q2 = N − q1 + 1. The confidence interval for
|RY X(ω)|2 is obtained as (h−1(h(|R̂Y X(ω)|2) −

h(q2)|(R̂∗
Y X(ω)|2)), h−1(h(|R̂Y X(ω)|2) −

h(q1)|(R̂∗
Y X(ω)|2)))

independent data stretches. We filter X(t, l), add E(t, l) to obtain
Y (t, l), t = 0, . . . , T − 1 for l = 1, . . . , n. Then, we estimate the
coherence according to Eq. (2). We compute confidence intervals
using the three following approaches:

• Wang and Tang method [5],

• Enochson and Goodman normal approximation [7], and

• the proposed bootstrap approach of Table 1 and Table 2.

For the method in [5], we have produced a library of confidence
bounds for the coherence. The generation of the library is tedious
and requires extensive computations to cater for a large range of
sample coherences, but this computation needs to be performed
only once. Given an estimate of the coherence, |R̂Y X(ω)|2, one
would use this library to find the confidence interval bounds. The
bootstrap approach and the approach in [7] compute confidence
intervals based directly on the coherence estimate.

Unless otherwise stated, we will use the following parameters:
α = 5%, N = 399, T = 64, n = 20, N1 = 100, N2 =
25, SNR = 0 dB. All results presented in this section are based
on 500 Monte Carlo replications. Consider first the case where
the input signal and the noise are Gaussian distributed. Figure 2
shows the 95% confidence bounds obtained with all three methods.
The figure indicates that the bootstrap and the method in [5] give

Table 2. Variance stabilising transformation estimation.

Step a) Resampling. Generate N1 bootstrap samples X ∗
i (ω) from

X (ω) and for each calculate |R̂∗i
Y X(ω)|2, i = 1, . . . , N1.

Step b) Variance Estimation. Generate N2 bootstrap samples
from X ∗

i (ω), i = 1, . . . , N1 and calculate σ̂∗2
i , a bootstrap

estimate of the variance of |R̂∗i
Y X(ω)|2, i = 1, . . . , N1.

Step c) Variance Function Estimation. Estimate the variance
function ζ(|RY X(ω)|2) by smoothing the values of σ̂∗2

i

against |R̂∗i
Y X(ω)|2, i = 1, . . . , N1.

Step d) Variance Stabilising Transformation Estimation. Esti-
mate the variance stabilising transformation from

h(|RY X(ω)|2) =

∫ |RY X (ω)|2

ζ(s)−1/2ds .

similar results, except at low coherence values while the method
in [7], as expected, breaks down for coherence values outside the
range of validity of the approximation.
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Fig. 2. True coherence (solid) and estimated 95% confidence
bounds with the bootstrap (dash-dotted), Wang and Tang’s method
(dashed) and Enochson and Goodman’s approach (dotted), for
Gaussian signal and noise.

We also used the theoretical variance stabilising transforma-
tion tanh −1 instead of the one given in Table 2. However, we
divided the transformed statistic by the standard error, estimated
using the bootstrap in order to reduce erratic behavior. This ap-
proach often leads to a better variance stabilisation than the boot-
strap approach in Table 2. Using this type of variance stabilisation
and for the setting above, we show in Figure 3 the actual upper and
the lower tail coverages, i.e., α̂/2 as well as the confidence level
1 − α̂ and the nominal values by solid lines. One can see that the
bootstrap deviates more from the nominal value than the method
in [5] for small coherence values.

We now consider non-Gaussian signals. For simplicity let us
assume a constant coherence for all frequencies. Let the input sig-
nal be Laplace distributed and the noise be t4 distributed. In Fig-
ure 4, we show the lower and upper tail coverages as well as the
confidence level estimated by the three methods. It can clearly be
seen that the bootstrap approach maintains the nominal levels bet-
ter than the method suggested in [5]. Also, Enochson and Good-
man’s approximation performs well in comparison to the other two
methods as the true coherence of 0.8 falls onto the range of valid
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Fig. 3. Estimated lower and upper tail coverages and confidence
level with the bootstrap (dash-dotted), Wang and Tang’s method
(dashed) and Enochson and Goodman’s approach (dotted) for
Gaussian signal and noise. Solid lines indicate nominal values.

Table 3. Lower and upper tails and confidence level for a nominal
95% confidence interval over all frequencies

lower tail confidence upper tail
Bootstrap 0.034 0.937 0.030
Wang & Tang 0.061 0.923 0.016
Enochson & Goodman 0.030 0.940 0.030

approximation. The coverage values averaged over all frequencies
are shown in Table 3.
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Fig. 4. Estimated lower and upper tail coverages and confidence
level with the bootstrap (dash-dotted), Wang and Tang’s method
(dashed) and Enochson and Goodman’s approach (dotted) for
Laplace and t4 distributed signal and noise, respectively. Solid
lines indicate nominal values.

5. DISCUSSION

Extensive simulations have been performed with the three methods
discussed in the paper. The results confirm that Wang and Tang’s
method is an approximation only. The method performs well when
the distribution of the sample coherence is valid, i.e. when the
signal and the noise are Gaussian or even in non-Gaussian settings
when a large sample size n is available. As the sample size drops
the method performs poorly. Also, the two other methods suffer in
the latter case as the estimation of the coherence becomes critical,

especially for low values. We emphasize that the method proposed
in [5] requires the use of a library. Although the library can be
produced off-line, the complexity increases with the number of
sample coherence points one wishes to consider. One can choose
interpolation to overcome this problem, however.

The bootstrap method and Enochson and Goodman’s approx-
imation calculate confidence bounds directly from the sample co-
herence estimated from the data. The bootstrap can be computa-
tionally intensive if a variance stabilisation is estimated, but our
experiments have shown that the theoretical tanh −1 transforma-
tion with additional scaling by the standard error not only reduces
computational complexity, but also leads to more accurate results.

6. CONCLUDING REMARKS

We have discussed confidence interval estimation for the coher-
ence function. We have investigated three methods, of which one
has recently been proposed and claimed to be exact. We have pro-
posed a bootstrap based method, which, unlike the recently pro-
posed method, does not require the generation of a library of con-
fidence bounds. We have compared the results in view of con-
fidence level and lower and upper tail coverages under different
settings such as signal and noise distributions. Extensive simula-
tions have shown that for a large coherence the bootstrap approach
is more accurate in that it maintains the nominal confidence level,
also in non-Gaussian environments.
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